Development of a Wireless Position Tracking System

An Undergraduate Thesis
Presented to
The Department of Electrical and Computer Engineering
The Faculty of Engineering
The University of Manitoba

In Partia Fulfilment
Of the Requirements for the Degree in
Bachelor of Science in Computer Engineering

Submitted By:
Kyle Geske

Date:
March 9, 2000

Abstract

This thesis developed a low cost wireless tracking system utilizing both GPS and
Internet technology. Unlike currently available systems, it provides world-wide
accessibility to the real-time location data collected by the tracking devices while still
providing full freedom of motion for the object being tracked. More specificaly, the
World Wide Web was used as a distribution medium for the location data and a cellular
modem was used to give the tracking device the ability to report its location in a wireless
manner. The client and server computer programs designed for this system were written
as cross-platform applications in order to alow them to run under both the Windows 98
and Linux operating systems. Through extensive testing, the system was shown to
provide position accuracy within 100 meters horizontally and 156 meters vertically, 95%

of the time.

Acknowledgements

| would like to take the time to thank the following people: My family and my
girlfriend Shannon for providing me with moral support and putting up with my
crankiness after pulling thesis oriented all-nighters. My thesis advisor Bob McLeod for
accepting me as an advisee, obtaining a GPS receiver for me and not mocking my chosen
topic. And finally, my friends, for without you guys | would probably have dropped out
of engineering years ago. So thanks, Andrew, Bruce, Bryan, Chris, Harold, Mike and

Steve.

Table Of Contents

N 1 = ot PSP [
ACKNOWIEAGEMENTS ...ttt b e bt i
TaDIE Of CONLENES ... bbbt e e i
JLIE= Lo = o) B o [0 =SSP viii
Table Of TABIES.....ceeeee e et IX
List of Abbreviationsand ACrONYMS........cccccoiiieiieie e X
Chapter 1 - INTrOAUCTION........coiiiiieieriese et se e saesne e 1
R 00 PRSI 1
L2 PrOBIEOM ...t 1
1.3 SCOPE. .ttt e e n e r e n e n e ne s 2
Chapter 2 - Background INfOrmation............cccoeceiieiieiesiese e 3
2.1 GPS Background INfOrMatioN...........cceierireienieieeeee st 3
2.1.1 Longitude/Latitude Co-Ordinate SyStem.........cccceeceevieeicieeiie e 3
2.1.2 Global POSItiONING SYSIEMcoieeeececeecte e 5

2.2 Internet Technology Background INfOrmation...........c.ceveereeeeneeneneesessesee e 9
2.2.1 The TCP/IP ProtOCOIS.....c.ciiiiiisiesiesiesieieie ettt s sneas 9
2.2.2 ThEHTTP ProtOCOIcoiiiiiiiesiecie st sne e 11

P U 11 010 =Y 13

Chapter 3 - System Requirementsand Architecture.........cccooveve e, 14

3.1 SySteM REQUITEIMENTS.cueeieieeeiecieseesieeeesee e eee s e sseeseessaesseeseesseeseesaesseensesseens 14
3.2 SYStEM ATChITECIUIE........eeecieeeee et 14
3.2.1 Data ACQUISITIONccueeieeeiecie ettt ettt e et e e e nneeneeeneens 15
3.2.2 DAta PrOCESSING.ciueiuerieeieeiesiestesie st sttt e e see st sse st sae e e se e e e ssesresnesnenneas 15
3.2.3 Data DIStrIBULION.......cceiiieeeees e 16
34 SUMIMBIY ...ttt ettt et e st e et st e et e st e e be e ssse e be e s aae e se e snte e s beeenseenseenneeenneennne 16
Chapter 4 - Detailed System DeSCription........cccceeiieieeeiie e 17
4.1 DAl ACQUISITION.....uicieieieiecie et eie sttt re et e e te et e e s teesesseesseennesneesneennens 17
4.1.1 GPSRECEIVEN MOUUIE...........ooeiriiiirieeiieeeee e 17
4.1.2 Portable COmpULEr SYSEEM.........coiiiiieccie et 20
4.1.3 CHENt SOftWAI ...t nn e 21
4.2 DAA PIOCESSING....ccuvieiieiiie ettt e et st e s e et e s e e e beesraeebeeanaeereesneeenns 23
4.2.1 Client - Receiver Communication ProCessiNg.......ccccevvereveeseenesieeseeseeseenns 23
4.2.2 Client - Server CommuniCation ProCeSSINGccueerererieeieeieeniesiesesiesiesieneens 23
4.2.3 Server INformation PrOCESSING.......cccivieiieiiieiie et sie e e e st 24
4.3 DA DIStITDULION.ccveeieeiiieieeese e 26
4.3. 1 Front-end SErver GUIccooiiiieeeeee e 27
4.3.2 BaCK-EN0 HTTP SEIVEN ...ttt 28
4.4 Other DevelOPMENT ISSUESc..ooiiiiirierieee e 29
4.4.3 Thread Synchronization ISSUES..........c.eciieiieeiie et 29
4.4.4 Multi-Platform ComplianCe...........eccveeeieee e 29
A.5 SUMIMBIY 1..itieeitieeesiteeeeiteessteeessseeesseeesseeesseeessseeesnseeeasseeeasseeesssesesssesesseesnnessnsneesns 30

Chapter 5 - EXPerimentation..........cccveiieiieeiie ittt 31

5.1 DesCription Of EXPEITMENTS.......ccviieieeieeiesiesie e sieesie e sse e e esaeeaesseessesnee e 31
5.1.1 Requirements That Could Not Be Testedccccveveeiieivieecie e 31
5.1.2 Remaining TestS and RESUILS.........cceiieieeie e 32
5.1.3 Testing Without A Cellular MOAEMcoceiiiiierieee e 33

N2 U 11 010 = YRR 34

Chapter 6 - Conclusion and Recommendationscccuevvveereereseeseeseseeseeeeeseeenees 35
REFEI BNCES. ...ttt a et et saeens 37
Appendix A - TAIP Protocol INformation...........ccccceevveeenieesesie e eee e 38
Appendix B - Client Source Code (C++) and Resource Files.........cccoovevinenvneniene. 40

L] o 1= oo o o PSSP 40

GPSCHENT. ...t r e 41

1 9 o o TSRS 42

0 o PSSR 44

00X 0 o T 45

[0]07S3 o SRS 49

OIPS_COMMIMLCPP: 1 uveeveeenreassesanseesseeasesssseessessseessessssesssessssesssessssesssessnsesssesssesssessnsesssessnns 50

00 1S3 oo 01 10 T o 1SR 53

(1 00X o o 1SR 54

1= 8 P 60

(1S A= 1 0] oo o LR 61

[T A= (0] G o O PRSP 65

\Y

S A= LT o o) ISP 66

S (10t o USSR 69
SEITAI LN e 72
L= o X ot o] TSRS 73
1= 0 2 PSSR 77
L0100 o] o F USRS 78
TN s 79
(1 ST 80
KBNIT. L.t 83
(012 2= o { o 1O USSR P PP PR 84
Appendix C - Server Source Code (JAVA)ccceeceeeireeiieiiiee e esieeseeesieesee e e saesseens 85
LTRSS < AV C BT V7= RSO RPR 85
(o]0 1T o0 o (0 SN = Y= VSR 86
(010 ST 11 (S =Y P 91
RISIONY _FHEJVAL ... et ene e 93
FoTorz o I 11 (ST = Y- SRR 96
0100 I L= = Y= TSP 98
00! [= (V7= VOSSP 100
S AVC A 10152 o I = Y- U 102
S B < AV SR T= V7= VOSSP 104
01z e RS S AV g = Y VUSSR 107
LU (S = V7= S 110
SEAEUS VECLON JBVA ...ttt ettt et bbbt n e n e nenresneenenneas 111

Vi

gps Ul java

Vii

Table of Figures

Figure 2.1 - The earth divided into Longitude and Latitude.............cccoeeveveeveeeeceecieeene, 4
Figure 2.2 - The 24 SV GPS CONSLEIELION.........ccciiiirieieieesie e 7
Figure 2.3 - TCP/IP COMMUNICALTON.......ccceiiiieiieeitie st esiee et ee e 10
Figure 4.1 - The ACE Il OEM GPS RECEIVE......ccccceiieiieeieiteenieeeesteesteeeesseesseeessseenes 18
Figure 4.2 - Power Supply and RS-323 Regulation CirCUItS...........ccoceeeeieereenienenicnienene 20
Figure 4.3 - Server Application SCreenshot.........ccvcveieece e 27

viii

Table of Tables

Table2.1 - HTTP Request and RESPONSE........ccueceeiieiieeie e eee et sne e 12
Table 4.1 - The Structure of Client/Server MESSAgES.........cccuvvreririeeieeieerere e 24
Table A.1- TAIPMeESSAgE FOIMELcccveeiieeiie ettt 38
Table A.2 - TAIPMessage QUalITIErS.......cuuveerieiieiiere et 38
Table A.3 - Sample TAIP PV MESSA0E........cciiiiieeeieieeie et 39

List of Abbreviations and Acronyms

ASCII

CMOS

DGPS

DOD

GPS

GUI

HTML

HTTP

IP

LAN

OEM

PPS

RFC

SPS

SV

TAIP

TCP

URL

uTC

American Standard Code for Information Interchange
Complementary Metal Oxide Semiconductor
Differential Global Positioning System
Department of Defense

Global Positioning System

Graphical User Interface

HyperText Markup Language

HyperText Transfer Protocol

Internet Protocol

Local Area Network

Origina Equipment Manufacturer

Precise Positioning Service

Random Access Memory

Request For Comment

Standard Positioning Service

Space Vehicle

Trimble ASCII Interface Protocol
Transmission Control Protocol

Universal Resource Locator

Co-ordinated Universal Time

Chapter 1 - Introduction

1.1 Purpose

The objective of this thesis is to investigate the feasibility of a low cost wireless
position tracking system using both GPS, (Global Positioning System), and Internet
technology. This thesis introduces the architecture for a low cost wireless position

tracking system along with an evaluation of the technology.

1.2 Problem

In the past, the real-time tracking of vehicles, items, and personnel was only a
reality for large government agencies in spy novels. Recent developments in technology
are now bringing this type of tracking capability to the general public. Real-time tracking
systems could be used to monitor the locations of police squad cars and ambulances for
faster emergency response time. The location of public transportation vehicles, such as
buses could be displayed at bus stop terminals for interested patrons. Overly protective
or prying parents could track the location of the family car unbeknownst to their teenager
in the driver's sedt.

When considering systems of this nature, one has to consider both the location
data being used for tracking purposes, as well as the method with which the location data
will be made accessible. Currently, most low cost tracking systems do not allow for real-
time access to location data. Instead, the onboard tracking device stores the data for later
retrieval and analysis. For atracking system to be truly useful, it should provide a highly

accessible real-time data monitoring mechanism. To allow for this mechanism, and till

provide full freedom of movement, the system would have to report its location data via
a"wireless' communication link.

The system developed in this thesis uses a GPS receiver as a source of location
data and a wireless connection to the Internet, (more specificaly the World Wide Web),

as a distribution medium for this data.

1.3 Scope

This thesis is comprised of 6 chapters. The first chapter presents the objective of
the thesis, details what is lacking in currently available position tracking systems and
provides some motivation for the thesis. The second chapter provides background and
technical information on GPS, the Internet and position tracking systems. The third
chapter details the requirements for the system being developed and outlines the basic
architecture for the tracking system. In chapter four a detailed description of the tracking
system is given. Chapter five provides methods and the results for the experimentation
done with the system. And finally, chapter six provides a conclusion to the thesis along

with recommendations for future work.

Chapter 2 - Background Information

This thesis relies very heavily on the use of both GPS and Internet technology.
This chapter will begin with an overview of the Global Positioning System run by the
US Department of Defence, DoD. A brief explanation of the Internet related

technologies used in this thesis will aso be provided.

2.1 GPS Background Information

For as long as man has been on this earth, he has been searching for accurate
navigation and positioning methods, from the first man travelling on foot and using
landmarks to determine his position, to a SR-71 Blackbird military aircraft gathering
target location data while travelling at supersonic speeds. The United States Department
of Defence runs a freely available and highly accurate positioning system called GPS.
This section will provide an overview of GPS and the longitude/latitude co-ordinate

system used in this thesis.

2.1.1 Longitude/Latitude Co-Ordinate System

The location of any point on a planar suface can be fully described by both a
horizontal and a vertical co-ordinate. Had the earth been truly flat and rectangular as it
had been perceived in the past, a simple equally spaced grid system could be used to
describe any location on earth. However, the earth is neither flat nor rectangular. It is
not even a perfect sphere. The fact of the matter is that the earth is an oblate dlipsoid, a
dightly egg shaped sphere [ROS99]. A grid-like system of latitudes and longitudes was
devised to describe precise locations on earth. Both latitude and longitude are measured

3

in terms of degrees, (°). Figure 2.1 shows a map of the earth including basic longitude

and latitude information.

o 30 i . i AL L >

g !I]-F'I?.- - r |r 2 :.-'J‘-‘l ¢ m:'\‘_\‘ W) : .

SN ENEEEECENERESHOARAL S ARua)

T AN ALK AR AN S

S N L LY o8

AR AN /)

i “ M\\\i\\% \H ‘| HM’F’/%//’

N

e Lungltude —_—

Figure 2.1 - The earth divided into Longitude and L atitude

L atitudes can be described as lines that circle the earth parallel to the equator, the
line that equally divides the earth into a Northern and Southern hemisphere. Degrees of
latitude are numbered from 0° to 90° North and South. Zero degrees in latitude is the
location of the equator. Ninety degrees North and South is the location of the North and
South poles respectively. Each degree of latitude is approximately equal to 111 km, this
variation is cause by the élipsoid shape of the earth.

Longitudes can be best described as lines that circle the earth and converge at
both the North and South poles. Degrees of longitude are numbered from 0° to 180° East
and West. Zero degrees in longitude is located at Greenwich, England. The East and

West degrees meet at 180°, and define the International Date Line. At the equator, a

degree of longitude is approximately equal to 111 kms. As the latitude increases,
longitudinal degrees decrease in distance until they converge at one of the earth's poles.

For increased accuracy, degrees can be sub-divided into minutes, ('), and seconds,
(")- Each degree contains 60 minutes, and each minute contains 60 seconds. Seconds can
be further divided into tenths, hundredths, and thousands [ROS99]. A longitude and
latitude is said to be in decimal degree form if it has not been broken up into minutes and
seconds. In decimal degree form, the sign of the number denotes the co-ordinate's
direction, (positive for North and East, negative for South and West). The level of
accuracy dealt with in this thesis is in the range of 100-200 meters, and therefore,
longitude and latitude will be described in degrees, minutes and seconds. An example
co-ordinate in this system is the location of Winnipeg, Manitoba, Canada at 49° 54'
North and 97° 14' West. Seconds were not used in this location, as they would have
overly constrained the location of the city.

To obtain the metric spacing of longitude and latitude at different points on the
earth's surface and remain within the accuracy required by this thesis, the WGS84 datum
was used as well as the great circle distance formula. The WGS84 datum provides an

accurate measurement of the circumference of the earth through its poles.

2.1.2 Global Positioning System

GPS is a satellite based radio navigation system developed and run by the US
Department of Defence. The system consists of 24 satellites, or Space Vehicles, (SVs), 5
ground monitoring stations around the world, and a master control station in Colorado.
The signals broadcast by the SVs are received and used to calculate the longitude,

latitude and height of the receiver. The information provided by the SVs can aso be

used to provide timing with near atomic clock accuracy. There are two levels of service
available from the GPS, the Standard Positioning Service, (SPS), and the Precise
Positioning Service, (PPS).

SPS is the service available to the general public a no cost, but at a dight
reduction of accuracy. Since GPS is a broadcast system, the US government did not want
to give everyone in the world access to a highly accurate positioning system for reasons
of national security. Instead of fully denying access to the service, they deliberately
introduced small timing and position errors into the public band GPS signals. This is
known as Selective Availability, (SA). With SA, SPS provides a predictable positioning
accuracy of 100 meters horizontally, 156 meters vertically with time transfer accuracy to
UTC within 340 nanoseconds 95% of the time [USN99].

PPS is the highly accurate service available to the US military and other US
sanctioned organizations. PPS signals are protected from public view using very
sophisticated encryption techniques. As PPS is not restricted by SA it can provide a
predictable positioning accuracy of 22 meters horizontally, 27.7 meters verticaly with
time transfer accuracy to UTC within 100 nanoseconds 95% of the time.

Each of the 24 SVs orbit the earth with a 12 hour period, at approximately
20,200km, at an inclination angle of 55 degrees. This allows for 5 to 8 SVs to be visible
from any point on earth at all time. Figure 2.2 provides a basic view of the GPS
congstellation.

The SVs maintain two way communication with the ground stations, which
provide them with precise location and clock correction information. Incorporating this

correction information with the data from their on board atomic clocks, the SVs

broadcast the current time, (in UTC) as well as their exact location. These broadcasts are

synchronized in such a manner that all the SV's transmit the information simultaneousdly.

Figure2.2 - The 24 SV GPS Constellation

GPS receivers are passive devices that use the data sent by the SVs to calculate
their location. Contrary to public belief, the GPS recelvers do not transmit any
information back to the SVs. The GPS receivers use the location and timing information
broadcast by a SV to determine their distance away from the satellite. They can
determine this distance because they know the time at which the broadcast message was

sent, the time at which they received the message and the speed of the radio waves used

for the transmission. The method used by the receivers to calculate their location is that
of triangulation.

To triangulate the position of a GPS receiver in three dimensions, three reference
SVs are needed. Once the GPS receiver has calculated its distance from a SV it knows
that it lies somewhere on the surface of a sphere with the SV in its centre. With three
reference distances, the receiver knows that it is located at the point at which the three
spheres intersect.

This scenario would work perfectly if the GPS receiver could determine its
precise distance from each SV. However, this calculation is very dependant on timing,
and low cost GPS receivers do not contain atomic clocks, (if they did, they would no
longer be very low cost). As we are dealing with signals which are travelling at close to
the speed of light (3x10"8 m/s), a small discrepancy in timing will result in a very large
error in distance. How does the receiver then compensate for this lack in timing
accuracy? It will lock onto the signal of one more reference SV. If three perfect
measurements are able to locate a point in 3-dimensional space, then four imperfect
measurements can do approximately the same thing. [TRI97] As we know, if the three
spheres were accurately calculated they would all meet at a single point. With inaccurate
timing, a forth sphere measurement would not intersect with the first three. The GPS
receiver acknowledges that this discrepancy is due to errors in its internal clock and will
look for a clock correction which would allow all four spheres to intersect at a single
point. Not only does this provide an accurate fix on the location of the receiver, it also

gives the existing internal clock near atomic clock accuracy.

2.2 Internet Technology Background Information

Communication and the distribution of information are two of the most important
aspects of daily life. With the advent of the Internet, the ability to make information
instantly accessible to millions world-wide has become a redlity. This thesis uses the
Internet as a distribution medium for the location data which is gathered by the GPS
receiver. The data is made available via the World Wide Web, and therefore, this section
will provide a brief overview of the HTTP Protocol used to communicate between Web
browsers and Web clients. As the location data is sent to the web server via a TCP/IP

connection this protocol suite will also be examined.

2.2.1 The TCP/IP Protocols

The Transmission Control Protocol, (TCP), and the Internet Protocol, (IP), are
the main data transfer protocols on the Internet. The combination of TCP and IP
provides a reliable and connection oriented data path for networked applications. The
general hierarchy of client/server communication using a TCP/IP network is depicted in

figure 2.3.

Client Application Server Application

TCp Tcp
TCP Port TCP Port
P P
IF Address TF Address
EThermneT ETherneT
Ethernet &ddress Ethernet Address

@
Figure 2.3 - TCP/IP communication

The flow of data from a client application to a server application across a TCP/IP
connection is as follows. The client application, which has been assigned a TCP port
number by the programmer, sends its data to the TCP module. The application specifies
the destination TCP port of the server application, as well as a destination IP Address. To
smplify matters it can be assumed that all networked computers have a unique IP
address and these addresses correspond to unique Ethernet addresses. The Ethernet is the
physical medium through which the TCP/IP connection is transmitted. The TCP module
then passes the client's data down to the IP module. Both the TCP and IP modules add
extra header information to the data These headers hold information such as the
destination IP address and the destination TCP port number. Again, to ssmplify matters

we must assume that the data magically arrives at its destination and is passed by the

10

Ethernet module to the IP level. The destination IP module strips off the IP headers and
passes the data to the appropriate TCP port. The server application has also been bound
to a TCP port number and will next receive the client's data from the TCP module.
Although this is a very smplistic view of a TCP/IP connection, it provides
enough detail to explain how an application layer protocol, like HTTP, can transfer data

from source to destination across a TCP/IP network.

2.2.2 The HTTP Protocol

The HyperText Transfer Protocol (HTTP), is an application layer protocol used
to transfer information on the World Wide Web using a TCP/IP network. A subset of the
HTTP protocol was implemented in this thesis for the data distribution system.

HTTP is a request and response oriented protocol. In terms of its use on the
World Wide Web, a Web browser sends an HTTP formatted request to a Web server
requesting web page content. The Web server, in turn, returns an HTTP formatted
response, which includes a success or error code and possibly, the requested web page
content. Much like the description of TCP/IP, this is a necessarily smplistic view of the
HTTP protocol. A sample request and response is depicted in table 2.1. The line

numbers were added to facilitate further explanation.

11

Web Browser HTTP Request

1) GET /index.html HTTP/1.1

2) Accept: */*

3) Accept-Language: en-ca

4) Accept-Encoding: gzip,deflate

5) User-Agent:Mozilla/4.0 (compatible;M SIE 5.01;Windows 98)
6) Host: 207.161.231.161

7) Connection: Keep-Alive

Web Server HTTP Response

1) HTTP/1.1 200 OK

2) Date: Mon, 21 Feb 2000 05:38:37 GMT
3) Server: Apache/1.3.9 (Unix)

4) Keep-Alive: timeout=15, max=100

5) Connection: Keep-Alive

6) Transfer-Encoding: chunked

7) Content-Type: text/html

Table2.1- HTTP Request and Response

In order to create a Web server that can effectively communicate with standard
Web browsers, a server must meet minimal compliance with the HTTP RFC, (a
standards document written by the Internet Engineering Task Force). For minimum
compliance, the bolded sections of table 2.1 must be considered. The requested content
would follow line 7 in the server's response.

The first line of the HTTP request indicates the browser's request to "GET" the
file, "index.html", using the HTTP protocol version 1.1. With this information aone, the
server can now make areply to the browser.

The first line of the response indicates that the server is also using version 1.1 of
the protocol. The next line of importance is line 5, the connection status. Keep-Alive
signifies that the TCP/IP connection, through which the request and reply was sent, will

remain open for further request. This is subject to the timeouts in line 4. If the server

12

wishes to terminate the TCP/IP connection after its response it can return a connection
type of closed. The final, and perhaps the most important line, is line 7. In this line the
server specifies the type of content information it is returning. In our example, the server
specifies a content-type of text/html.

All of the TCP/IP and HTTP interactions are performed unseen to the user, who

merely typed a webpage URL into a web browser and waited for the content to appear.

2.3 Summary

This chapter introduced some of the technology systems used in this Thesis. The
first section dealt with the Globa Positioning System and the Longitude/L atitude Co-
ordinate system. The second section provided some background information on the
TCP/IP and HTTP protocols. An understanding of the information presented in this
chapter will lead to a better overall understanding of the system requirements outlined in

chapter 3 and the detailed system description in chapter 4.

13

Chapter 3 - System Requirements and Architecture

This chapter discusses the requirements for the position tracking system which
will be developed. Also presented is the outline for the basic architecture of the system.
The position tracking system developed in this thesis consists of three mgjor sections: 1)
Data acquisition, 2) Data processing, 3) Data distribution. Each of these topics will be

investigated in this chapter and fully detailed in chapter four.

3.1 System Requirements

The requirements for the tracking system are as follows:
Wireless data reporting and world-wide accessibility to data.
Support for multiple data-reporting clients.
Low cost.
Portable and easy to use client and server software.
Position accuracy to 100 meters horizontaly and 156 meters vertically, 95% of the

time.

3.2 System Architecture

The system developed in this thesis deals with the acquisition, processing axd
distribution of accurate location data. A GPS receiver connected to a portable computer
will provide the location data for the system. The data acquisition is to be performed by a
client application running on this portable computer. The distribution and analysis of the
data will be performed by both the client application and a server application running on
an Internet connected computer. The client and server application will communicate via

14

a cellular modem connection to the Internet. Since a single server application can track
multiple client systems, an attempt will be made to keep the cost of the client systems to

a minimum.

3.2.1 Data Acquisition

The location data will be collected from an OEM GPS receiver module. The
chosen receiver must include support for computer interfacing as well as a smple data
exchange protocol. It must also be able to provide the vertical and horizontal accuracy
required by the system. To keep this system affordable, the portable computer to be used
for acquisition must itself be quite low cost, and consequently, not very powerful. This
being the case, the operating system under which the client application is run should be
one which will not add much processing and memory overhead to the computing tasks of

the client.

3.2.2 Data Processing

In order to prevent the client and server application from being overloaded, the
task of data processing must be distributed between both applications. The client
application will communicate with the GPS receiver, process the communication
protocol data and send raw longitude and latitude information to the server via a cellular
modem. The server will further process the data by linking the co-ordinates to readable
location names, if the location name is known. The server will also archive the client's

location information for later retrieval.

15

3.2.3 Data Distribution

The server application will communicate with both the outside world, and with
the client. The outside world being any user who wishes to access the stored location
data. The server itself will perform the function of a web server and will also
communicate with the client application via a proprietary protocol over a TCP/IP
network. Since only one host computer is needed to run the server application, it will not

be restricted by cost or performance issues.

3.4 Summary

This chapter discussed the requirements of the position tracking system to be
developed in this thesis. It also presented the basic architecture of the system. It was seen
that the system could be separated into the acquisition, processing and distribution of
data. Now that the requirements for these topics have been defined, they will be

explained in further detail in chapter 4.

16

Chapter 4 - Detailed System Description

This chapter provides a detailed description of the position tracking system. Asin
the previous chapter, the description will be broken down into the acquisition, processing
and distribution of the location data. Also included is a section detailing some of the
problems that occurred during development and how those problems were solved. Both
the hardware and software aspects of the thesis will be described in the following

sections.

4.1 Data Acquisition

The data acquisition system is comprised of a GPS receiver module, a client
application and a portable computer equipped with a cellular modem. Each of these

components and how they interact will be discussed in this section.

4.1.1 GPS Receiver Module

The GPS receiver used in this thesis is the ACE Il GPS module, manufactured
and distributed by Trimble Navigation Limited. The module itself is approximately equal
in sizeto a credit card, (82.6mm x 46.5mm x 11.5mm), and can be seen in figure 4.1.

The ACE Il is a SPS receiver that can track up to 8 SVs simultaneously. The
ACE Il provides the standard SPS accuracy for Longitude, Latitude and time. The
typical location acquisition time claimed by Trimble for the receiver from a cold start,
(no battery backup knowledge of its location, time, or SV positions), is less than 130
seconds, 90% of the time. However, through experimentation, acquisition times of 2 to
12 minutes have been observed. To decrease the acquisition time, a 3.6-volt lithium

17

backup battery can be added to adlow RAM storage of time, last known location and

possible SV locations.

Figure4.1- The ACE || OEM GPS Receiver

TAIP, an ASCII based protocol developed by Trimble facilitates communication
with the receiver over a serial connection. Using the TAIP protocol, the device used in
this thesis was configured to report location data on a set time interval. This time interval
can be configured within the client application. More information on TAIP can be found
in Appendix A.

Seriad communication between the receiver and the portable computer is
established via a standard RS-232 connection. Since different machines can have
different internal signal levels, RS-232 was created as a standard interface for inter-
device communication [KINS91]. With ordinary CMOS technology, a logical one is

represented by +5 volts and logical zero with O volts. In RS-232, logica one is

18

represented by a negative voltage in the range of -3 to -25 volts and logical zero by a
positive voltage in the range of +3 to +25. The ACE Il input/output pins for seria
communication were designed for CMOS logic levels and the portable computers serial
port was designed for RS-232 levels, therefore, a small conversion circuit was needed. A
MAX232 chip by MAXIM was utilized for the voltage level conversion.

Another small circuit was needed for the power supply of the receiver. The
receiver requires a power supply of +5 volts DC with an accuracy of 5% and that can
supply a maximum current of 175mA. This supply was implemented with a 7805
voltage regulator and some filtering capacitors. The voltage regulator takes in voltage
from +8 volts to +18 Volts DC and outputs a +5 volt DC signal. A standard 9-volt DC
wall adapter was used as a supply for the circuit during development. The circuit was
designed in such a way that a standard 9-volt battery could be used to power the device
for field tridls. The schematics for the power circuit and the RS-232 conversion circuit
can be seen in figure 4.2. The RX and TX signals in the conversion circuit represent the

receive and transmit communication lines.

19

2-18Win Erdd

7 7
Y 7805
| IN OUT 2 2 2
o R A A A
100uF TD.luF TD 1uF TD.luF
JT_VSS
Woltage Eegulation Circuit
Tdd
C
0. 1uF V==
+ MLHZZZ
i+ | |
0. 1uF 13 WD m
- = |%|+ 7+ 'rl;rss__l__l__
5= 1- Tw= Tx out
I — — :
— Z+ BE{l— Ex in
- Ll:u.luF f7- EHE——— Ex oOut
+_|E - THl———— Tx in
—f1a na—
—s1a na—
—
1+
Tn_luF

E=232 Conversion Ciroutt

Figure 4.2 - Power Supply and RS-323 Regulation Cir cuits

The cost of the ACE Il GPS receiver and its associated Mighty Mouse Antenna
was $410. This cost, however, would decrease significantly for production size orders of

the device.

4.1.2 Portable Computer System

The development system for this thesis was a desktop Pentium 11 350 with 128
Megabytes of RAM, running Windows 98 as an operating system. This system provided
a solid development and testing atmosphere. Although it is not the state of the art in
current computer technology, a portable system of this calibre would not come at a low

cost. A more appropriate portable system would be as follows. A laptop computer

20

powered by a low end Pentium processor with 16 Megabytes of Ram and a on-board
cellular modem running the Linux operating system.

Linux is aUnix type operating system and was chosen for four reasons:
1) It istotally free to use.
2) It comes with built-in support for TCP/IP and serial communication.
3) It adds little overhead to processing and system memory, and can be run on older, less
powerful machines.
4) Computer programs written with care can run on both Windows and Linux based
system.

A used laptop computer, as described above, can be purchased for a couple of

hundred dollars, if not for less.

4.1.3 Client Software

As mentioned in the previous section, the client software must be written in such
a manner as to alow it to run under both Windows 98, (the development system), and
Linux, (the production system). Two possible computer-programming languages were
researched as possible cross-platform development solutions. The two languages were
Java from Sun Microsystems, and ANSI C++.

Sun Microsystems cites Java as the platform independent programming language
of choice for today's programmers. Java includes support functions for TCP/IP and serial
communication. As Java is an interpreted language, a Java Interpreter must be present to
process the Java program in order for it to run. The interpretation of a Java program

tends to be quite CPU and memory intensive.

21

Dennis Ritchie created the C programming language at Bell Telephone
Laboratories in 1972. The language was created to aid in the design of the UNIX
operating system. The language was standardised in 1983 by ANSI and there now exists
ANSI compliant C compilers for almost every computer platform. The C++ language
was created to add extra functionality to C as well as to address certain problems
inherent to the C language.

Given its strong ties to the UNIX/Linux operating system, as well as the overhead
of Java interpretation, C++ was chosen for client development. Specia care had to be
taken to provide full compatibility for Windows and Linux. Cross platform programming
libraries were developed for TCP/IP and serial communication. These libraries aong
with the source code for the rest of the client can be found in Appendix B.

The client application has two basic tasks; to collect GPS data via a seria
connection, and to report location data to the server via a TCP/IP connection. The client
can also request the server to tag co-ordinates within a certain radius with a site specific
name.

Using the cross platform serial routines, along with the TAIP protocol, the client
can configure the GPS receiver to output its current location on a set schedule. This
schedule also defines when the client will report location data to the server. The client
processes the reported data and uses the TCP/IP routines to send the data to the server.
The processing of data, as well as the application layer protocol used for client/server

communication, will be discussed in the following section.

22

4.2 Data Processing

The client and the server applications share the task of processing the GPS data.
The client processes the TAIP messages sent by the GPS receiver and then
communicates the results to the server. The server further processes and stores the

information before making it available for viewing.

4.2.1 Client - Receiver Communication Processing

The TAIP messages that the client receives from the GPS receiver must be
processed in order to extract the longitude and latitude information. The co-ordinates
will be sent to the server in decimal degree form. The server must then convert the
decimal degree information into degrees, minutes and seconds. For example, the server
could receive a value +37.39438 for latitude. The minutes would be determined by
0.39438 x 60 = 23.6628 minutes. The seconds would be determined by 0.6628 x 60 =

39.768 seconds.

4.2.2 Client - Server Communication Processing

The client can send two distinct types of messages to the server, a location
history message and a location logging message. The location history message is the
message the client sends each time the GPS receiver reports its location. The location
history message contains a latitude, longitude, and the time at which the data was
captured. The location logging message is the message which the client sends when the
user wants to tag the current co-ordinates with a site specific name. The location logging

message contains a latitude, longitude, a site specific location name and the radius of

23

validity in meters. The format of the messages used for client/server communication can

be seenin table 4.1.

##ACCCDDDDDEEEEFFFFF{G}

#H Indicates the start of a new message

A The message type indicator. This can be either an 'H' for location
history data or an'L' for location logging data.

CCCDDDDD | The latitude in decimal degree form with a decimal point between the
Csand Ds. (eg. +4985983)

EEEEFFFFF | The longitude in decimal degree form with a decimal point between the
Esand Fs. (eg. -09713393)

G For messages of type H thisis atime string. For messages of type L this
isalocation and aradius of validity.

{x} Signifies that x may occur any number of times

Table4.1- The Structure of Client/Server M essages

4.2.3 Server Information Processing

Once the server has received the location information from the client, it must

store this information into a file for future retrieval. The server aso has a file containing

gte gpecific location information. This location file contains a longitude, latitude,

location name and aradius of validity. If a user requests a co-ordinate via the web server,

the server must calculate if it falls within any of the co-ordinate ranges in the location

24

file. In order to do this, the server calculates the distance between the requested point and
each of the co-ordinates in the location file using the greater circle distance formula. If
the calculated length is shorter than that of the specified radius then the locations match
and the information returned to the user will be tagged with the location name. The
greater circle distance formula determines how many degrees apart two
longitude/latitude co-ordinates are. The WGS84 Datum defines the circumference of the
earth to be 40007.863 km and therefore, one degree is equal to the circumference divided
by 360 degrees. The following is a simple example of this distance calculation using the
co-ordinates for Winnipeg, Manitoba, Canada and Sydney, Australia.

Winnipeg:

Winnipeg Latitude = LatW = 49.9 in decimal degrees

Winnipeg Longitude = LonW =-97.13 in decimal degrees

Sydney, Australia:

Sydney Latitude = LatS = -33.92 in decimal degrees

Sydney Longitude = LonS = 151.28 in decimal degrees

Difference in Latitude = dlat = latW - |atS

Difference in Longitude = dlon = lonW - lonS

Meters per Degree = 40007.863km/360° = 111132.95 meters/degree

Degrees = 2* ASIN(((SIN((dlat)/2)"2)+COS(latW)* COS(latS)* (SIN((dlon)/2))"2)*-2)
Degrees = 128.57°

Distance = degrees * 111132.95 meters/degree = 14288.36 km

25

4.3 Data Distribution

The distribution of the GPS data is carried out by the server application. The
server can be separated into a front-end GUI, (Graphical User Interface), shown in figure
4.3, an HTTP web server and a data upload server. The data upload server was discussed
in sections 4.2.2 and 4.2.3. Each portion of the application is run within a separate
thread. Using threads within a program allows separate sub-sections of a program to run
independently and concurrently. Much like the client, the server was written as a multi-
platform program. Unlike the client, the server was written entirely in the Java
programming language. This choice was made due to the simplicity of thread usage in
the Java language and because the server's host computer was not constrained by cost or
performance issues. In order to simplify the testing of the system, the server application
was designed to track a single client agent in the field. However, due to the object
oriented nature of the Java language and the way in which the server was designed,
multi-client functionality could be easily added. The Java source code for the server can

be found in Appendix C.

26

Wk Sanmr Sabes Chant Sansmr Siates

Wik Sa e Stag Ceata Sevvaq Srehis

Thu Mar 24T :19:20 200: Senmd 2 web e cd | TEES-a cham el mb wases home com Thay o 34 70216 2000: Qucceesfuly Paravad Hision [l psaiididi adeoremwe s
ThuNar 2 172033 2W0; Sarved 3 web pege: [rasoiptaf unknosn-aipinrelecses.com Trw War 2170445 2000; Fuccer=fuly Recarsd Hisiory Cata . userid 141 Adeorowes. ox
ThuMar I 171045 N0: Eerved 3 web pago: 14 66 840, 173 mikvsera. homs.com Tru War 31 T:0715 3000 Successfuly Raca e d Hisiony Dala : usarkd]41 Adeorowssa. ca
ThuBar 2470420 2N00; Served 3 weh e user Boldbvdeon wave s Thei War 21 T:0245 2000: Suceas-aiuly Racaisad Histony Data : wead1 41 ddeonossss. ta

T W 2171215 2000 Suctaeeiuly Raca wad Higiony Dala | imamd 141 Adenwise e
el Wear 21 714006 2000 Suce sesfuly Racs iad Hiziony [oim | ieamddl 4 sdeonwiss ia
Thu Bar 21 TAT 15 2000 Jucceeafuby Race e d Hislony Cosde - usarid 141 Adeorossss on
Tru War 2171345 2000 Succez=fuly Rece fed Hisiony Dt useid 141 Adeorowse. oy
Thad Mar 31723153000 Suceassruly Raca b d Hisony Dada © wsadd141 ddeoroawsss. e

Sarver Ex cegtinng Stebe P Bt ony
Saner S enhong Wy RO - 0551 R 970 A T e 10054015 2000
Wy R - 4871 F4TH 97 5 W Thi Mar 2 102253214 2000
Wy Room - 4571 347K 37 81 W Thu Mer 2 11:4:1 4 2000
Wy Rrosoem : 48%51 347K 97551 W Thu Ward 1128014 2000
Wy Feooims - 49551 380K 9755 W T war? 11714014 2000
W RO A0S I 9T W T a2 1171914 2000
Wy Room BT H 72 W Thu Mar 2 112414 2000
Wy Roorm ;45751 347K 37 5 W Thid Wi 2 11:39:14 2000
Wy Rooim : 40751 T47H 97 64 W Thu War 3 11724:14 2000
Wy oo A5 4R 97 S W T ard 1130014 2000
iy DTy ST AP W T Mard 1144714 2000
Wiy oo A5 307 AT = W Thid Werd 114814 2000
Wy Roormi ; 48751 347K 37 "2 W Thu Mer 2 11734:13 2000
Wy Room - A8%51 T4°H 97 "84 W Thu Ward 11:58:13 200
Wy RO - A0S 34K 07 0 W Tha Ward 120401 3 2000
Wy RDOm - 48551 300K 9755 W ThuMar? 102901 3 2000
Wy Ry : 0% 0K 97 54 W) Thu Mar 2 17:12:12 2000
Wy Room ; 48" 1 347K 97 "8 W Thu Mar 2 12:18:13 2000
Wy Room : 481347 9721 VU Thu Ktar 2 1273413 2000
Wy Rroacir - 4051 40K 97584 W Tho R 2 1 2:30:13 2000

[t

iL

Disabile Weh Legs [Cear e Logs | Dissatin Char Logs Clizan Cliend Lagss

Figure 4.3 - Server Application Screenshot

4.3.1 Front-end Server GUI

The goal of the front-end GUI for the server was to provide the user (i.e. the
administrator of the server) with feedback regarding the status of the web server and the
data server, the location history of the client and any communication errors that have
occurred. The GUI, as seen in Figure 4.3, is separated into four text-based information
areas and a button panel.

The web server status area provides information on when the web pages were
accessed and by which Internet address. The client server, (or data server), status area
provides information on when the client uploaded either history or location logging
information. The Internet address of the client is aso shown in the client server status

27

area. The GPS history status area displays the last N locations of the client and the times
a which the locations were recorded. The number of locations displayed can be
configured within the server application. The final display area is the server exceptions
status area: In this area the user is given information on any communication problems
that have occurred. These communication problems can range from TCP/IP errors to
parsing error due to invalid client data. The button panel allows the user to clear or

freeze the data or web server status areas.

4.3.2 Back-end HTTP Server

The location data collected by the client application is made accessible via the
World Wide Web by means of a web server thread. The web server binds itself to the
TCP/IP port 80, the standard port for web servers, and waits for requests from web
browsers. When a web browser connects to the web server, a new and separate thread is
spawned in order to dea with the request. This is done in order to allow multiple web
browsers to simultaneoudly access the web server. The new request thread processes the
browser's HTTP request and sends back an HTTP response along with the location
information of the GPS client. Much like the GUI, the server responds with the last N
locations of the client and the times at which the locations were recorded. Again, the
value of N can be configured within the server. Once the response is sent the request

thread is terminated.

28

4.4 Other Development Issues

This section will provide a brief overview of some of the magjor problems that
occurred during the development of the tracking system. Also described will be the

solutions used to overcome these problems.

4.4.3 Thread Synchronization Issues

The main issue that surfaced while programming the multi-threaded server was
that of object synchronization. In order to design the server with multi-client
expandability in mind, the issue of multiple clients smultaneoudly uploading data had to
be considered. Since all the data would be stored within a single database, an object
locking mechanism was included to prevent file contention. This same locking system
was also used to prevent contention issues with other internal server objects that could be

written to simultaneously by various threads.

4.4.4 Multi-Platform Compliance

A fairly large portion of development time was spent modifying the cliernt
application so that it would run in an identica manner under both Windows 98 and
Linux. In most cases, the cause of encountered problems was either the absence of a
gpecific C++ function for one of the operating systems or a function that would operate
in a different manner for each operating system. These problems were eventualy

resolved by considerable research and development.

29

4.5 Summary

This chapter provided a detailed description of the position tracking system
developed in this thesis. The core technologies used in the acquisition, processing and
distribution of data were explained. A brief overview of some development problems
and their associated solutions was discussed. Also, the choice of certain technologies was

explained in reference to the system requirements defined in chapter 3.

30

Chapter 5 - Experimentation

This chapter will provide an overview of the tests which were performed using
the tracking system. These tests were done in order to confirm that the system was
operating according to the requirements of this thesis. Both the procedure and the results

of the tests will be detailed within the following sections.

5.1 Description Of Experiments

A series of field trials and assessments were used to test the tracking system for
compliance with the requirements of this thesis. Not all of the requirements defined in
section 3.1 could be accessed. The following are the requirements from section 3.1,
restated:

Wireless data reporting and world-wide accessibility to data

Support for multiple data-reporting clients.

Low cost.

Portable and easy to use client and server software.

Position accuracy to 100 meters horizontally and 156 meters vertically, 95% of the

time.

5.1.1 Requirements That Could Not Be Tested

The ability to test the wireless daa reporting relied on the availability of a laptop
with a cellular modem. Although a cellular modem was not available for testing
purposes, section 5.1.3 will detail how the tracking system was still testable. Also, since
there was only one client system built, it was impossible to test the server's support for

31

multiple clients. Chapter 4 details that the server was written for single client tracking
but designed with multi-client expansion in mind. Finally, an actual cost evaluation for
the system would be very hard to determine for a number of reasons. The first being that
if the system were to be developed commercially the cost would be determined by
evaluating bulk costs for the various components. The bulk cost of components varies
according to the number of components purchased. Second, a fairly large portion of the
cost would be determined by the cost of the client and server host computers. In most
cases, cheap or used laptops could be used for the client system and most companies or
casua users would have existing Internet connected computers on which the server could
run unobtrusively. This being said, steps were taken throughout the thesis to ensure alow

cost system.

5.1.2 Remaining Tests and Results

Evauating the ease of use of the server and client applications is a very
subjective procedure. However, extreme care was taken during the programming and
design phases of development in order to ensure a simple yet powerful interface for both
applications. The testing phase of the thesis lead to further refinements in the interfaces
for both the client and the server. The portability of the programs was fairly simple to
evauate. Due to the fact that the server was written using the Java language it can be run
on any operating system that supports the Java language. In order to test the client
program's portability between Windows 98 and Linux, the remaining system tests were
run under both operating systems.

In order to evaluate the accuracy of the tracking system the following test was

devised. The test comprised of leaving the client at a fixed location for a period of 500

32

minutes. The GPS device was configured to report its location once every 5 minutes
resulting in 100 recorded locations. Since the accuracy of the system must be 100 meters
horizontally and 156 meters vertically, the maximum linear error, (using pythagoras
theorem of right angle triangles), is approximately 185 meters. At the beginning of the
500 minute test, the client was used to tag the current location with a specific name on
the server with a radius of validity of 185 meters. After the 100 locations were logged
the location data was observed via the web server. This test was run twice using the
Windows 98 client and twice using the Linux client. During the first two Windows 98
test runs, 97 of the 100 locations were reported to be within 185 meters of the initia
location. After the first Linux test run, 98 locations were within 185 meters of the initial
location. The second Linux test run yielded 97 locations within the required accuracy
range.

The genera usability of the system and further accuracy tests were conducted by
uploading location names for various locations around town. These locations were
revisited 3 or 4 days later in order to see if system recognized the location co-ordinates
and tagged them appropriately on the web data. No problems were encountered during

this phase of testing which was conducted with both the Windows 98 and Linux client.

5.1.3 Testing Without A Cellular Modem

Initially, the thought of testing a wireless system with a wireless means of
communication seemed impossible if the system was to be kept mobile. However, the
way in which the client and server applications were designed suggested a simple
solution. The TCP/IP protocols can be used in an identical manner independent of

underlying physical communication medium, whether it be a wireless modem connection

33

to the Internet or a physical connection to an Internet connected network or LAN. The
property of TCP/IP that was exploited for the solution is the ability of a TCP/IP capable
computer system to establish connections with themselves without the presence of a
physical communication medium. This property allows the server and client applications
to communicate by running both programs simultaneously on the same laptop computer.
Using the same property, a web browser run on the laptop could also connect to the
server application to download location data. This solution along with the ability to run
the GPS hardware off a 9-volt battery gave the system full freedom of motion for the

testing phase of the thesis.

5.2 Summary

This chapter detailed the results and methods of the tests that were performed
using the tracking system. The system was shown to be compliant with the requirements
and expectation of this thesis. This section also showed how various problems that arose

during testing were overcome.

34

Chapter 6 - Conclusion and Recommendations

This thesis was motivated by the need for a low cost wireless tracking system for
the genera public. Unlike currently available systems, the system designed in this thesis
provides world-wide accessibility to the real-time location data collected by the tracking
device, while still providing full freedom of motion for the object being tracked.

As mentioned in chapter one, the system could be used to decrease emergency
vehicle response time, provide clients of public transportation with accurate arrival and
departure times, and perhaps, for somewhat less ethical purposes, such as parental
tracking of unaware teenagers. Since the client component of the system was designed to
be cost effective and is relatively small in size, the entire system could be directly
embedded into future laptop computers to provide a variety of services, including
tracking stolen laptops.

It was demonstrated that the system can provide the accuracy required by this
thesis and that it functioned in a predictable manner. Although the testable requirements
of the thesis were satisfied, there is still room for system improvement. The following

are some recommendations for future work with the tracking system:

A system upgrade to provide location data with greater accuracy. In order to increase
the accuracy while still using SPS GPS data, the system can communicate with a
GPS receiver placed a a known fixed location. The information gathered by this

receiver could be used to provide enhanced timing correction information. This is

35

known as DGPS or Differentia GPS, and when used with SPS data it can provide

accuracy within 1-10 meters.

No complex computer security issues were addressed in this thesis. Any rogue client
with the system password could upload false location data to the server. Further, the
web server provides no way of restricting access to the location data. Authentication
and encryption procedures could be implemented to solve these problems.

As mentioned in earlier chapters, the system created in this thesis can presently only

track a single client agent. By building more client devices and expanding the server
program the system could be converted into a fully functional multi-client tracking

system.

36

References

[ROS99]

[USN99]

[TRIOT]

[KINS91]

[ACEQS]

Rosenberg, Matt. "Latitude and Longitude." About.com Inc.
28 Nov. 1999. <http://geography.about.com/education/
geography/library/weekly/aa031197.htm>

" GPS System Description.” United States Naval Observatory.
12 Nov. 1999. <ftp://tycho.usno.navy.mil/pub/gps/gpssy.txt>

"GPSTutorial." Trimble Navigation Limited. 1997
<http://www.trimble.com/gps/index.htm>

Kinsner, W. "Microprocessor Interfacing Laboratory Notes."
University of Manitoba. Sep. 1991.

"ACE Il GPS. System Designer Reference Manual." Trimble
Navigation Limited. Jun. 19998.

37

Appendix A - TAIP Protocol Information

The follow protocol information was taken from [ACE98].
M essage Format

>ABB{ C}[;|D=DDDD][;* FF]<

> Start of message delimiter

A Message qualifier

BB A two character message identifier

C Data String

DDDD | Optional four character vehicle ID

FF Optional two character checksum

< End of message delimiter

{x} Signifies that x can occur any number of times

[X] Signified that x may optionally occur once

Table A.1- TAIP Message Format

Message Qualifiers

Qualifier | Action

Query for a single sentence (sent to GPS sensor)

Response to a query or a scheduled report (from the sensor)

Schedule reporting frequency interval in seconds

Enables equipment to be initialized, and sets various message types

O|lwn|m|xo|O

Specify a minimum distance travelled and a minimum and maximum time
interval for the next report

Table A.2 - TAIP Message Qualifiers
Sample PV Message
The Position/Velocity Solution (PV) message is one of the more commonly used TAIP
messages and most sensors using TAIP are set by default to output the PV message once

every 5 seconds.

The following analysis of atypical PV message is provided to further explain the TAIP
message protocol.

38

>RPV15714+3739438-1220384601512612;1 D=1234;* 7F<

ID Meaning

> Start of Message Delimiter
R Response Qualifier
PV PV message Identifier
15714 GPS Time of Day
+3739438 | Latitude

-12203846 | Longitude

015 Speed

126 Heading

1 Source of Data

2 Age of Data
ID=1234 | VehicleID

*TF Checksum

<

End of Message Delimiter

Table A.3 - Sample TAIP PV Message

39

Appendix B - Client Source Code (C++) and Resource Files

GPSclient.cpp

/*
* @PSclient.cpp
*
* Witen by: Kyle Andrew McGath Geske
*
* Created as a requirement of ny Undergraduate thesis in
* Conputer Engineering for the University of Manitoba.
*
* Description: The file contains the program s mainline
*
* Copyright Kyle Geske 1999/2000
*
*/

#i ncl ude <i ostream h>
#i ncl ude <string. h>

#include "init.h"
#i nclude "GPSclient.h"
#i ncl ude "ops. h"

void main(int argc, char **argv)

{ ++argv,--argc; // Renove the Oth Arg
cout << "WAy-K GPS Client. Version " << VER HHGH << "." << VER LOW << endl
if ((argc > 0) && (!strcnp(argv[O0],"-v")))
config_it(true); // Configure (Sockets, Serial Ports, 1/0O Log Files, GPS)
Llse
{
config_it(false); // Configure (Sockets, Serial Ports, 1/0O Log Files, GPS)
ops(); // Begin normal operations
unconfig_it(); // Shutdown everything. (Sockets, Serial Ports, 1/O Log File)
}

40

GPSclient.h

GPSclient. h
Witen by: Kyle Andrew McGrath Geske

Created as a requirement of my Undergraduate thesis in
Conputer Engineering for the University of Manitoba.

Description: Header files for GPSclient.cpp

Copyright Kyl e Geske 1999/ 2000

EE R S R I N B N

/

#i f ndef WAYK_GPSCLI ENT_H
#def i ne WAYK_GPSCLI ENT_H

#define VER HGH 0
#define VER LOWL1

#endi f // WAYK_GPSCLI ENT_H

41

init.cpp

/*

* init.cpp

*

* Witen by: Kyle Andrew McGrath Geske

*

* Created as a requirenent of my Undergraduate thesis in
* Conputer Engineering for the University of Manitoba.
* Description: This file contains functions used to

* parse the configuration file in order to properly

* configure the various sub-systens used in the

* program

*

* Copyright Kyle Geske 1999/ 2000

*

*/

/1 Include Files

#i ncl ude <i ostream h>
#i ncl ude <string. h>

#include "init.h"
#include "file_io.h"
#i ncl ude "net.h"

#i nclude "serial.h"
#i ncl ude "gps_conmm h"

/!l Local Static Variables and Structures

static struct config_Data config[CONFI G_| TEMVS] ;
static char config_File[10] = "data.cfg";

/'l Functions

void config_it(bool verbose)

{

set_fil e_verbose(verbose);
set _fil ename(config_File, CONFI G _FI LE);

if (open_file('i', CONFI G_FILE))

config fromfile();
close_fil e(CONFI G FI LE);
}

set _filenane(config_val ue("ERRORFI LE"), ERROR _FI LE);
set _fil ename(config_val ue("LOGFI LE"), LOG_FI LE);
open_file('a' , ERROR FILE);

open_file('a',LOG FILE);

LOG REPORT("GPS Client Startup. (operations |og)");
ERROR_REPORT("GPS dient Startup. (error log)");

wayk_Net _Init();

Serial _Init(config_val ue("COWORT"), config_val ue(" COMSET"));

Gos_init(config_val ue("LNTIME"), config_val ue("PVTIME"), config_val ue("1DNUM"),
ver bose) ;

cout. flush();

42

}

void config_fromfile()

{

}

struct config_Data *config_Ptr = config;

for(int i = 0; i < CONFIG_|ITEMS; i++)
{

strcpy(config_Ptr->key,read_file('!', CONFI G_FILE));
strcpy(config_Ptr->value,read_file('!', CONFI G FILE));
if (!strcnp(config_Ptr->value, "END"))

br eak;
config_Ptr++;

const char* config_value(const char *key)

{

}

for(int i=0; i<CONFIG |TEMS; i++)

if (!strcnp(config[i].key, key))
return config[i].val ue;
}

return "";

voi d unconfig_it()

{

LOG REPORT("GPS Cient Shutdown. (operations log)");
ERROR_REPORT(" GPS Cl i ent Shutdown. (error lo0g)");

close_fil e(ERROR FILE);
close_fil e(LOG FILE);

wayk_Net O eanup();

Serial _d eanup();

43

init.h

init.h
Witen by: Kyle Andrew McG ath Geske

Created as a requirenent of my Undergraduate thesis in
Conput er Engi neering for the University of Manitoba.

Description: Header files for init.cpp

Copyright Kyle Geske 1999/ 2000

ELIE B S B B . N N N .

/

#i fndef WAYK I NI T_H
#define WAYK INIT_H

#define CONFI G | TEMS 11
struct config_Data

char key[50] ;
char val ue[50];

}s

voi d config_it(bool verbose);

voi d unconfig_it();

const char* config_value(const char *key);
void config_fromfile();

#endi f

ops.cpp

Ll T I I T R T N L B N

ops. cpp

Witen by: Kyle Andrew McGrath Geske

Created as a requirement of my Undergraduate thesis in
Conputer Engineering for the University of Manitoba.

Descri ption:

the main operations of the program

Copyright Kyle Geske 1999/ 2000

/

#if defi ned(WAYK_OS_W N32)

#i ncl ude <wi nsock2.h> // Wndows Network Include File

#elif defined(WAYK_OS_LI NUX)

#i ncl ude <arpal/inet. h>

extern "C'
{ #includ

#endi f

e "kbhit.h" }

/1 Shared Include Files

#i
#i
#i
#i

#i
#i
#i
#i
#i

11

ncl ude <i ost
ncl ude <stdi
ncl ude <con

ream h>
0. h>
0. h>

ncl ude <W ndows. h>

ncl ude "ops.

hn

ncl ude "gps_comm h"

ncl ude "net.

h"

ncl ude "tine. h"
nclude "file_io.h"

Functi ons

voi d ops(voi d)

bool done =
char choi ce

fal se;

whi | e(! done)
{

pol | GPS()

choi ce =

getch();

swi t ch(choi ce)

{
case 'q
case '|I'
def aul t
}

done = true; break;
log_it(); break;
cout << "Invalid Key!

[

45

This file contains functions to contro

/1 Linux Netowk Include File

<< choice <<

3K

<< endl

voi d pol | GPS(voi d)
{

bool
char
char

bool

ean full
nmessage[160] ;
*sendDat a;

al good = true

whi I e(! kbhit())

{
bool processed = fal se;
full = Receive_Gps_Message(nessage);
if (full)
.
if (nessage[2] =="'L")

| ost")

}
}
}

sendData = (char *)processLN(nmessage, (char *)getTinme(),'H);
processed = true;

else if (message[2] =="P")

sendData = (char *)processPV(nmessage, (char *)getTine(),'H);
processed = true;

}

if (processed)

SOCKET sd = Establish_Sock_Connection(get_Current_Hostnanme(), 31337)
if (Valid_Socket(sd))

Send_Sock_Message("| et mei n\n", sd);
Send_Sock_Message(sendDat a, sd)
Shut down_Sock_Connecti on(sd);

}

el se

ERROR_REPORT(" Socket connection could not be made. History data

}
}

1 if full

voi d log_it(void)

char
char
i nt
char
char
bool
bool

Set _

cout
cout
cin.

message[160] ;
name[80] ;
radi us;

*sendDat a;

*ptr;

full = fal se;
processed = fal se

Gps_Paused(true);
.flush();

<< "Nanme of Location:" << flush;
getline(nane, 80);

46

cout << "Radius of Validity:" << flush;
cin >> radi us;

ptr = nane;

ptr += strlen(nane);

sprintf(ptr, " @d", radius);
Send_Gps_Message(" QLN");

while (1full)

{
full = Receive_Qps_Message(nessage) ;
if (full)
if (nessage[2] =="'L")
sendData = (char *)processLN(nessage, nane,'L');
processed = true;
else if (message[2] =="P")
sendData = (char *)processPV(nessage, nane,'L');
processed = true;
}
}
}

if (processed)

SOCKET sd = Establish_Sock_Connection(get_Current_Hostname(), 31337);
if (Vvalid_Socket(sd))
{
Send_Sock_Message("I| et nei n\ n", sd) ;
Send_Sock_Message(sendDat a, sd) ;
Shut down_Sock_Connecti on(sd);
}

el se

ERROR_REPORT(" Socket connection could not be nmade. History data lost");

}
}

Set _(ps_Paused(fal se);
}

char* processPV(char *nessage, char *addon, char type)
{

char *ptr;

char | atitude[10];

char | ongitude[10];

static char sendData[80];

ptr = nmessage;

ptr += 9;

strncpy(latitude, ptr, 8);

latitude[8] = O;

ptr += 8;

strncpy(l ongi tude, ptr,9);

I ongi tude[9] = 0;

/| #HN+4985983- 09713393Thr Feb 17 2:25:8 2000

sprintf(sendDat a, "##% %% %\ n",type, | atitude, | ongi t ude, addon) ;

a7

}

cout << "Num SVs: ? - "<< sendData << flush;
return sendDat a;

char* processLN(char *message, char *addon, char type)

{

char *ptr;

char latitude[10];

char | ongitude[10];

char nunSV[3];

static char sendData[80];

ptr = nmessage;

ptr += 12;

strncpy(! atitude, ptr, 8);

latitude[8] = 0;

ptr += 10;

strncpy(l ongi tude, ptr,9);

| ongi tude[9] = O;

ptr += 33;

strncpy(nungV, ptr, 2);

nunsV] 2] = 0;

/| #HN+4985983- 09713393Thr Feb 17 2:25:8 2000
sprintf(sendDat a, "##% % %%\ n",type, | atitude, | ongi t ude, addon) ;
cout << "Num SVs: " << nunBV << " - "<< sendData << flush;
return sendDat a;

48

ops.h

ops. h
Witen by: Kyle Andrew McGrath Geske

Created as a requirement of my Undergraduate thesis in
Conputer Engineering for the University of Manitoba.

Description: Header files for ops.cpp

Copyright Kyl e Geske 1999/ 2000

EE R S R I N B N

/

#i f ndef WAYK_OPS _H
#define WAYK OPS H

#if defined (WAYK_OS_LI NUX)
#define getch() getchar()
#endi f

voi d ops(void);

voi d pol | GPS(void);

void log_it(void);

char* processLN(char *nessage, char *addon, char type);
char* processPV(char *nessage, char *addon, char type);

#endi f

49

gps_comm.cpp

gps_conm cpp
Witen by: Kyle Andrew McGrath Geske

Created as a requirement of my Undergraduate thesis in
Conputer Engineering for the University of Manitoba.

Description: This file contains functions for ACE Il GPS
recei ver communi cation. Using the TAIP protocol these
function utilize the serial comrunications library

found in serial_linux.cpp and serial _wi n.cpp.

Copyright Kyl e Geske 1999/ 2000

EBE I I T I S B S I I

~

/1 Include Files

#i ncl ude <string. h>
#i ncl ude <stdio. h>

#i ncl ude <i ostream h>
#i ncl ude <W ndows. h>

#i nclude "serial.h"
#i ncl ude "gps_comm h"

/1l Local Static Variables

static bool verbose;
static char idNuni5];
static bool idset = fal se;
static char LN 5];

static char PV[5];

// Function Declaration
void wait_4 | ock(void);
/1l Functions

void Gps_init(const char* LNtime, const char* PVtine, const char* id, const bool
ver b)

{

char nessage[80];

strcpy(i dNum (char *)id);
strcpy(LN, (char *)LNtine);
strcpy(PV, (char *)PVtine);
ver bose = verb;

Send_QGps_Message(" SRM | D_FLAG=T; CS_FLAG=F; CR_FLAG=F; *6E"); // Turn off
Checksuns and include a nanual |y generated checksum
Recei ve_Gps_Message(nmessage) ;

sprintf(message, "FLNO000"); // Disables LN Messages
Send_Gps_Message(nessage) ;

sprintf(nessage, "FPV0O000"); // Disable PV Messages
Send_QGps_Message(nmessage) ;

50

sprintf(message, "SI D¥%",idNum); // Set the ID #
Send_QGps_Message(nessage) ;

Recei ve_QGps_Message(nmessage) ;

idset = true;

wait_4 lock(); // wiit for a 4 SV |ock

sprintf(message, "FLNYs",LN); // Set the LN nessage reporting tine
Send_Gps_Message(nessage) ;

sprintf(message, "FPV%",PV); // Set the PV nessage reporting tine.
Send_QGps_Message(nessage) ;

}
voi d Send_Gps_Message(const char* nessage)
{
const char *ptr = fnt_tai p(message);
int tenp = Send_Serial _Message(ptr,strlen(ptr));
if (verbose)
cout << "Sending[" << tenmp << "]: " << ptr << flush
}
bool Receive_Gps_Message(char* nessage)
{
char ch[1];
int bytes;
char *ptr = message;
bool full = false
do
bytes = Receive_Serial _Message(ch, 1);
if (bytes)
full = true;
ptr += sprintf(ptr,"%", ch);
}
whi | e(byt es);
if (verbose && full)
cout << "Receiving: " << nessage << endl
return full
}
bool Query_Gps_Message(const char* query, char* nessage)
bool full;
Send_CGps_Message(query);
full = Receive_Gps_Message(nessage);
return full;
}
const char* fnt_taip (const char* mnsg)
{
static char buffer[80];
char *ptr;
ptr = buffer;
ptr += sprintf (ptr, ">%", msg);
if (idset)

ol

ptr += sprintf(ptr,";1D=%",idNum;
sprintf (ptr, "<\n");

return buffer;

}

void wait_4_ | ock(void)

{
bool full,locked = fal se;
char nmessage[80];

whi | e(!'l ocked)
{
Send_Gps_Message(" QST") ;
full = Receive_QGps_Message(nessage);
cout. flush();
if (full)

if ((message[5] == "'0") && (nmessage[6] == '0"))
| ocked = true;

el se
cout << nessage[5] << nessage[6] << endl;

}

voi d Set _Gps_Paused(bool pause)
{

char nessage[160] ;

Recei ve_QGps_Message(nessage); //dummy
if (pause)

sprintf(nessage, "FLNOOOO"); // Disables LN Messages
Send_Gps_Message(nessage) ;
sprintf(nmessage, "FPV0O000"); // Disable PV Messages
Send_QGps_Message(nmessage) ;

}

el se

{
sprintf(nessage, "FLNYs",LN); // Set the LN nessage reporting tine.
Send_Gps_Message(nessage) ;
sprintf(nessage, "FPV%",PV); // Set the PV nessage reporting tine.
Send_QGps_Message(nessage) ;

}

Recei ve_Gps_Message(nessage); //dumy

52

gps_comm.h

gps_comm h
Witen by: Kyle Andrew McGrath Geske

Created as a requirement of my Undergraduate thesis in
Conputer Engineering for the University of Manitoba.

Description: Header files for gps_comm cpp

Copyright Kyl e Geske 1999/ 2000

EE R S R I N B N

/

#i fndef WAYK_GPS_COMM H
#define WAYK_GPS_COWM H

void Gps_init(const char* LNtine, const char* PVtinme, const char* idNum const
bool verbose);

voi d Send_Gps_Message(const char* nessage);

bool Query_Gps_Message(const char* query, char* nessage);

bool Receive_QGps_Message(char* nessage);

const char* fnt_taip (const char* nsg);

voi d Set _Gps_Paused(bool pause);

#endi f // AYK_GPS_COWM H

53

net.cpp

net. cpp
Witen by: Kyle Andrew McGrath Geske

Created as a requirement of my Undergraduate thesis in
Conputer Engineering for the University of Manitoba.

Description: This file contains cross-platform
TCP/ I P functions for the WN32 and Li nux pl atforns.

Copyright Kyle Geske 1999/ 2000

L T S T T R T

#if defined(WAYK_OS WN32) // Wndows Include Files
#i ncl ude <w nsock2. h>
#i ncl ude <i ostream h>
#elif defi ned(WAYK_OS_LINUX) // Linux Include Files
#i ncl ude <sys/socket. h>
#i ncl ude <net db. h>
#i ncl ude <netinet/in.h>
#i ncl ude <arpa/inet. h>
#i ncl ude <uni std. h>
#i ncl ude <errno. h>
#endi f

/1 Shared Include Files

#i nclude "net.h"

#i ncl ude "net _error.h"
#include "file_io.h"

/1 Constant Declaration

const int kBufferSize = 1024;
/1 Functions

#if defi ned(WAYK_OS_W N32)

#def i ne WAYK_NET_W NSOCK_VER MAJOR 2
#defi ne WAYK_NET_W NSOCK_VER M NOR 0

void Wnsock_Init()
{

WSADATA wsaDat a;

int rc = WBASt ar t up(MAKEWORD(WAYK_NET_W NSOCK_VER_MAJOR,
WAYK_NET_W NSOCK_VER M NOR), &wsaDat a) ;
if (rc 1= 0)
WAYK_NET_ERROR("WBASt art up") ;

i f ((LOBYTE(wsaData.wersion) != WAYK NET_W NSOCK_VER MAJOR) ||
(H BYTE(wsaDat a. wWer si on) ! = WAYK_NET_W NSOCK_VER_M NCR))
{

WBAC eanup() ;

WAYK_NET_ERROR("Bad W nsock version");

}
}
voi d W nsock_Cl eanup()
{
int rc = WBAQ eanup();
if (rc == SOCKET_ERROR)
WAYK_NET_ERROR(" WSACI eanup");
}

#endi f // WAYK OS_W N32

/1 Look up Address (DNS | ookup if it's not dotted IP)

u_l ong LookupAddress(const char* pcHost)

{
u_l ong nRenot eAddr = inet_addr (pcHost);

#if defined(WAYK_OS_W N32)
i f (nRenoteAddr == | NADDR_NONE)
#eli f defined(WAYK_OS_LI NUX)
i f (nRenoteAddr < 0)
#endi f
{
/'l pcHost isn't a dotted IP, so resolve it through DNS
hostent* pHE = get host byname(pcHost);
if (pHE == 0) {
#if defined(WAYK_OS_W N32)
return | NADDR NONE;
#el i f defined(WAYK_OS_LI NUX)
return O;
#endi f

}
nRenot eAddr = *((u_l ong*) pHE->h_addr _|ist[0]);
}

return nRenpt eAddr;

}
/'l Get the host nane of this PC.

const char* get_Current _Host nane()

{

static char hostnane[256];
get host nanme(host nane, 256) ;

return hostnane;

}

/1 Do we have a valid socket?

bool Val i d_Socket (SOCKET sd)
{

if (sd

#i f defined(WAYK_OS_W N32)
I'= | NVALI D_SOCKET)

#elif defined(WAYK_OS_LI NUX)
> 0)

55

#endi f

return true;
el se

return fal se;

/1 Establish Connection

SOCKET Est abl i sh_Sock_Connecti on(const char* host Address, Port Type Port)
{

u_l ong nRenot eAddr = LookupAddr ess(host Addr ess) ;
/1l Create a stream socket
SOCKET sd = socket (AF_I NET, SOCK_STREAM 0);
#if defi ned(WAYK_COS_W N32)

if (sd !'= I NVALI D_SOCKET)
#elif defined(WAYK_OS_LI NUX)
if (sd > 0)

#endi f

{

sockaddr _i n si nRenot €;
sinRenote.sin_fam |y = AF_| NET;
si nRenot e. si n_addr. s_addr = nRenot eAddr;
sinRenpte.sin_port = htons(Port);
if (connect(sd, (sockaddr*)&sinRenote, sizeof(sockaddr_in))
#if defined(WAYK_OS_W N32)
== SOCKET_ERROR)

sd = | NVALI D_SOCKET;
#elif defined(WAYK_OS_LI NUX)

< 0)
{
sd = -1;
#endi f
}
}
return sd;

}

/1 Set up a listener

SOCKET Set up_Sock_Li stener (const char* host Address, int nPort)
{
u_l ong nlnterfaceAddr = LookupAddress(host Address);
cout << "Host address : " << hostAddress << endl;
cout << "Host IP: " << nlnterfaceAddr << endl;
if (ninterfaceAddr != | NADDR_NONE)
{
SOCKET sd = socket (AF_I NET, SOCK_STREAM 0);
if (sd
#i f defined(WAYK_OS_W N32)
1= | NVALI D_SOCKET)
#el i f defi ned(WAYK_OS_LI NUX)
> 0)
#endi f
{
cout << "Created socket" << endl;
sockaddr _in sinlnterface;
sinlnterface.sin_famly = AF_I NET;

56

sinlnterface.sin_addr.s_addr = nlnterfaceAddr;
sinlnterface.sin_port = htons(nPort);
if (bind(sd, (sockaddr*)&sinlnterface, sizeof(sockaddr_in))
#if defined(WAYK_OS_W N32)
I = SOCKET_ERROR)
#elif defined(WAYK_OS_LI NUX)
== 0)
#endi f

{
cout << "bind conplete. port:" << nPort << " address : " <<
inet_ntoa(sinlnterface.sin_addr) << endl;
listen(sd, SOVAXCONN);
cout << "Listen conplete" << endl;
return sd;

}

el se
WAYK_NET_ERROR("Bi nd did not work");
}
}

#i f defi ned(WAYK_OS_W N32)
return | NVALI D_SOCKET;
#el i f defi ned(WAYK_CS_LI NUX)
return -1;
#endi f

}

/'l Accept Connection on a Listening Socket
SOCKET Accept _Sock_Connecti on(SOCKET Li st eni ngSocket, sockaddr i n& si nRenot e)

int nAddrSi ze = si zeof(si nRenote);
return accept (Li steni ngSocket, (sockaddr*)&sinRenote, &nAddrSize);
}

/1 Shut down Connection G acefully

bool Shut down_Sock_Connecti on(SOCKET sd)
{

// Disallow futher data sends.

#i f defined(WAYK_OS_W N32)

if (shutdown(sd, SD SEND) == SOCKET_ERROR)
#el i f defi ned(WAYK_OS_LI NUX)

if (shutdown(sd, 1) < 0)

#endi f

WAYK_NET_ERROR(" shut down()");
}
/1 Gab all left over data.

char acReadBuffer[kBufferSize];
while (1)
{

int nNewBytes = recv(sd, acReadBuffer, kBufferSize, 0);
#i f defined(WAYK_OS_W N32)

if (nNewBytes == SOCKET_ERROR)

#el i f defi ned(WAYK_OS_LI NUX)

if (nNewBytes < 0)

#endi f

{

S7

return fal se;

}
else if (nNewBytes != 0)

{
cerr << endl << "FYl, received " << nNewBytes <<
unexpected bytes during shutdown."” << endl;
}
el se

/1 Ckay, we're done!
br eak;
}

/1 O ose the socket.

#if defined(WAYK_OS_W N32)

if (closesocket(sd) == SOCKET_ERROR)
#el i f defi ned(WAYK_OS_LI NUX)

if (close(sd) < 0)

#endi f

return false;

}

return true;

/'l The send nmessage function

bool Send_Sock_Message(const char* nmessage, SOCKET sd)
{

const int message_Lenght = strlen(nessage);
if (send(sd, message, message_Lenght, 0)
#i f defined(WAYK_OS_W N32)
I = SOCKET_ERROR)
#elif defined(WAYK_OS_LI NUX)
> 0)
#endi f
return true;
el se
return fal se;

/1 The Reci eve nessage function
/'l Returns the nunber of bytes received or a 0 if nothing.

int Receive_Sock_Message(char *nessage, int |en, SOCKET sd)
{

return (recv(sd, nessage,len,0));

}

/1 A bit of a test function which inplenments a echo client.
int Send_Sock_ Echo(SOCKET sd)

/1 Send the string to the server

58

const char* kpcEchoMessage = "This is the test nessage!";

const int kEchoMessagelLen = strlen(kpcEchoMessage);
if (send(sd, kpcEchoMessage, kEchoMessagelLen, 0)
#if defined(WAYK_OS_W N32)

== SOCKET_ERROR)
#el i f defi ned(WAYK_OS_LI NUX)

< 0)
#endi f
{

return -1;
}

cout << "Sent Message Waiting for reply" << endl;

/1l Read reply from server
char acReadBuffer[kBufferSize];
int nTotal Bytes = 0;
whil e (nTot al Byt es < kEchoMessagelLen) {
int nNewBytes = recv(sd, acReadBuffer + nTotal Bytes,
kBufferSize - nTotal Bytes, 0);
#i f defined(WAYK_OS_W N32)
if (nNewBytes == SOCKET_ERROR)
#el i f defi ned(WAYK_CS_LI NUX)
if (nNewBytes < 0)
#endi f
{

return -1;

}
else if (nNewBytes == 0) {
cerr << "Connection closed by peer." << endl;

return O;
}
nTot al Byt es += nNewByt es;
}
acReadBuffer[nTotal Bytes] = "\0"';

cout << acReadBuffer << endl;

/| Check data for sanity
if (strncrmp(acReadBuffer, kpcEchoMessage, nTotal Bytes) != 0)
cerr << "M smatch in data received fromserver. " <<
"Sonet hing's broken!" << endl;

}

return nTot al Byt es;

59

net.h

net. h
Witen by: Kyle Andrew McGrath Geske

Created as a requirement of my Undergraduate thesis in
Conputer Engineering for the University of Manitoba.

Description: Header files for net.cpp

Copyright Kyl e Geske 1999/ 2000

* 0% kX kX X kX kX X

/

#i f ndef WAYK_NET_H
#define WAYK NET_H

typedef unsigned short PortType;
#i f defined(WAYK_OS_W N32)

#i ncl ude <wi nsock2. h>
#define wayk_Net _Init() Wnsock_Init()
#defi ne wayk_Net _Cl eanup() W nsock_d eanup()

void Wnsock_Init();
voi d Wnsock_d eanup();

#elif defined(WAYK_OS_LI NUX)

#i ncl ude <netinet/in.h>
#define wayk_Net _Init()
#defi ne wayk_Net _Cl eanup()
typedef int SOCKET;

#endi f // AYK OS W N32

const char* get_Current _Hostnane();

bool Valid_Socket (SOCKET sd);

SOCKET Est abl i sh_Sock_Connecti on(const char* host Address, PortType Port);
SOCKET Set up_Sock_Li stener (const char* host Address, int nPort);

SOCKET Accept _Sock_Connecti on(SOCKET Li st eni ngSocket, sockaddr_i n& sinRenote);
bool Shut down_Sock_Connecti on(SOCKET sd);

int Receive_Sock_Message(char *nessage, int |en, SOCKET sd);

bool Send_Sock_Message(const char* nessage, SOCKET sd);

int Send_Sock_Echo(SOCKET sd);

#endi f //WAYK NET H

60

net_error.cpp

/*

* net_error.cpp

*

* Witen by: Kyle Andrew McGrath Geske

*

* Created as a requirenent of my Undergraduate thesis in
* Conputer Engineering for the University of Manitoba.
* Description: This file contains cross-platform

* functions for creating human readabl e error network
* messages for the WN32 and Linux Platforns.

*

* Copyright Kyle Geske 1999/2000

*

/

#i f defined(WAYK_OS_W N32)

/1 Wndows |Include Files

#i ncl ude <i ostreanp

#i ncl ude <strstreane

usi ng nanespace std;

#i ncl ude <wi nsock2. h>

/1 Constant Declarations
const int kBufferSize = 1024;
/1l Local Static Variables and Structures
static struct ErrorEntry

{

int nlD;

const char* pcMessage;

} gaErrorList[] ={

{ 0, "No error" 1},

{ WBAEI NTR, "Interrupted systemcall" },

{ WBAEBADF, "Bad file nunber" },

{ WBAEACCES, "Perm ssion denied" },

{ WBAEFAULT, "Bad address" },

{ WBAEI NVAL, “Invalid argunment” },

{ WBAEMFI LE, "Too nany open sockets" },

{ WSBAEWOULDBLOCK, "Qperation would bl ock" },

{ WBAEI NPROGRESS, "Qperation now in progress" },

{ WBAEALREADY, "Qperation already in progress" },
{ WBAENOTSOCK, "Socket operation on non-socket" },

61

WSAEDESTADDRREQ,
WBAEMSGSI ZE,
WSAEPROTOTYPE,

WSAENOPROT OOPT,

WSAEPROT ONOSUPPORT,

WSAESOCKTNOSUPPORT,

WSAEOPNOT SUPP,
WSAEPFNOSUPPORT,
WSAEAFNOSUPPORT,
WSAEADDRI NUSE,
WSAEADDRNOTAVAI L,
WSAENETDOVW,
WSAENETUNREACH,
WBAENETRESET,
WSAECONNABORTED,
WSAECONNRESET,
WSAENGOBUFS,
WBAEI SCONN,
WSAENOT CONN,
WSAESHUTDOWWN,
WSAETOOVANYREFS,
WBAET! MEDQUT,
WSAECONNREFUSED,
WBAEL OCP,
WSAENAMETOOLONG,
WSAEHOSTDOW,
WSAEHOSTUNREACH,
WSAENCTEMPTY,
WBAEPROCLI M
WBAEUSERS,

WBAEDQUOCT,

" Protoco
"Bad protoco

"Protoco

"Pr ot ocol

"Socket

"Socket

" Host

"Directory not

i's not

is down" },

"Too many users"

62

"Message too | ong" },
wrong type for

option"

"Network is down" },

"Too many references,

"Connection refused"

"File nane too |ong"

"No route to host" },

"Too many processes”

}

"Di sc quota exceeded"

"Destination address required" }

socket ™" },

}

not supported" },

"Socket type not supported" },
"Qperation not supported on socket"
fam |y not supported" },
"Address fam |y not supported" },
"Address already in use" },

"Can't assign requested address" },

"Network is unreachable" },

"Net connection reset" },

"Connection reset by peer" },
"No buffer space avail able" },
is already connected" },

connect ed" 1},

can't splice"

"Connection tinmed out" },

b

"Too many | evels of symbolic Iinks"

¥

enpty" },

1

},

h

"Software caused connection abort" },

"Can't send after socket shutdown" },

H

h

{ WBAESTALE, "Stale NFS file handle" },

{ WSAEREMOTE, "Too many |l evels of renpote in path" },
{ WBASYSNOTREADY, "Net wor k subsystemis unavail able" },
{ WBAVERNOTSUPPORTED, "W nsock version not supported" },

{ WBANOTI NI TI ALI SED, "W nsock not yet initialized" },

{ WBAHOST_NOT_FQOUND, "Host not found" },

{ WBATRY_AGAI N, "Non-aut horitative host not found" },
{ WBANO_RECOVERY, "Non-recoverable errors" },

{ WBANO _DATA, "Valid name, no data record of requested type" },
{ WBAEDI SCON, "Graceful disconnect in progress” },

{ WBASYSCALLFAI LURE, "Systemcall failure" },

{ WBA_NOT_ENOUGH MEMCRY, "Insufficient nenory available" },

{ WBA_OPERATI ON_ABORTED, "Overl apped operation aborted" },

{ WBA_| O_| NCOVPLETE, "Qverl apped |1/ 0O object not signalled" },

{ WBA_| O_PENDI NG "Overlapped I/Owll conplete later" },

/1 { WSBAI NVALI DPROCTABLE, “Invalid proc. table from service provider" },
/' 1{ WSBAI NVALI DPROVI DER, “Invalid service provider version nunber" },

/1{ WBAPROVI DERFAI LEDINIT, "Unable to init service provider" },
{ WBA | NVALI D_PARAMETER, "One or nore paraneters are invalid" },
{ WSA_ | N\VALI D_HANDLE, "Event object handle not valid" }

i

const int kNum\Vessages = sizeof (gaErrorList) / sizeof (ErrorEntry);

/1l Returns a readable form of the wi nsock errornessage.
const char* WBAGet Last Error Message(const char* pcMessagePrefi x)
{

static char acErrorBuffer[256];

ostrstreamouts(acErrorBuffer, sizeof(acErrorBuffer));

outs << pcMessagePrefix << ": ";

?nt nLastError = WBAGet Last Error () ;

Ifgﬁ I(| = 0; i < kNunm\essages; ++i)

if (gaErrorList[i].nlD == nLastError)

outs << gaFErrorList[i].pcMessage;
br eak;

63

}

}
if (i == kNumMessages)
{
outs << "unknown error";
}

outs << " (" << nLastError << ")";

outs << ends;
acErrorBuffer[sizeof (acErrorBuffer) - 1] = '"\0';
return acErrorBuffer;

}

#el i f defi ned(WAYK_OS_LI NUX)
/1 Linux Include Files

#incl ude <string. h>

#i ncl ude <errno. h>

#i ncl ude <stdio. h>

// Returns a readble formof the Linux network errno.

const char* strerrorcat(const char* nsg)

{
static char errorbuffer[256];
char *ptr = errorbuffer;
ptr += sprintf(ptr,"%: ", nsQ);
sprintf(ptr,"9%",strerror(errno));

return errorbuffer;

}
#endi f // WAYK _OS_W N32

64

net_error.h

net _error.h
Witen by: Kyle Andrew McGrath Geske

Created as a requirement of my Undergraduate thesis in
Conputer Engineering for the University of Manitoba.

Description: Header files for net_error.cpp. Defines
the net error logging macro for WN32 and Li nux.

Copyright Kyle Geske 1999/ 2000

Lo T I I T S T N L B N

/

#i f ndef WAYK_NET_ERROR H
#def i ne WAYK_NET_ERROR H

#include "file io.h"
#if defi ned(WAYK_OS_W N32)
const char* WSAGet Last Error Message(const char* pcMessagePrefix);
#defi ne WAYK_NET_ERROR(err) ERROR_REPORT(WSAGet Last Err or Message(err))
#el i f defi ned(WAYK_OS_LI NUX)
const char* strerrorcat(const char* msgQ);
#define WAYK_NET_ERROR(err) ERROR _REPORT(strerrorcat(err))
#endi f //WAYK OS ?

#endi f //WAYK_NET_ERROR H

65

serial_win.cpp

serial _wi n.cpp
Witen by: Kyle Andrew McGrath Geske

Created as a requirement of my Undergraduate thesis in
Conputer Engineering for the University of Manitoba.

Description: This file contains the WN32 specific
serial comunication functions

Copyright Kyle Geske 1999/ 2000

I T S T T R T

/1 Include Files

#i ncl ude <i ostream h>
#i ncl ude <stdi o. h>

#i ncl ude <wi ndows. h>
#i nclude "serial.h"

/1 Local Static Variables

stati ¢ HANDLE comm
static COMMII MEQUTS ol d_Ti neout s;

/1 Functions

void Serial _Init(const char* conport, const char* settings)

{
comm =
Creat eFi |l e(conport, GENERI C_READ| GENERI C_WRI TE, 0, NULL, OPEN_EXI STI NG FI LE_ATTRI BU
TE_NORMAL, 0) ;
if (comm == | NVALI D_HANDLE VALUE)
{
cout << "Error: Cannot open " << conport << "." << endl;
}
else // Configure the port
{
DCB dcb;
COWI| MEQUTS conmm Ti neout s;
Get ComTi neout s(comm &conm _Ti meout s) ;
comm Ti neout s. Readl nt erval Ti meout = MAXDWORD;
comm Ti nmeout s. ReadTot al Ti neout Mul tiplier = O;
comm Ti meout s. ReadTot al Ti neout Constant = 100;
comm Ti meouts. WiteTotal Ti meoutMul tiplier = O;
comm _Ti meouts. WiteTot al Ti meout Constant = 0;
Set Commili meout s(conmm &comm Ti neout s) ;
Get Commtst at e(conm &dchb) ;
Bui | dConmDCB(setti ngs, &dchb);
Set Commt at e(conm &dch) ;
}

66

}

bool Send_Serial _Message(const char* nessage, const

{

unsi gned | ong returnlen;
int total bytes = 0;

WiteFil e(comm nessage, | en, & eturnl en, NULL) ;
total bytes += returnlen;

if (total bytes == len)
return true;

el se
return fal se;

int Receive_Serial _Message(char *message, int |en)

{
int total bytes = 0;

DWORD byt esr ead;
char ch[10];
bool tried = fal se;

int limt = (len/ 10) * 10;
while(total bytes < linmt)
{

tried = true;
ReadFi | e(comm &ch, 10, &bytesread, NULL);

if (bytesread)
fc{Jr (int i =0; i < (int)bytesread; i++)
{ nmessage[total bytes+i] = ch[i];
t ot al byt es += byt esread,;

}

el se

}
if ((totalbytes < len) & ((totalbytes !'=10) ||
{

br eak;

int

| en)

Itried))

ReadFi |l e(comm &ch, len - total bytes, &bytesread, NULL);

if (bytesread)
{

for (int i =0; i < (int)bytesread; i++)

{

message[totalbytes+i] = ch[i];

t ot al bytes += bytesread,

}
}

nmessage[total bytes] = "\0";
return total bytes;

67

}

voi d Serial _d eanup()

{
Set Commili meout s(conm &ol d_Ti meout s) ;

Cl oseHandl e(comm) ;
}

68

serial_linux.cpp

/*

* serial _linux.cpp

*

* Witen by: Kyle Andrew McGrath Geske

*

* Created as a requirenent of my Undergraduate thesis in
* Conputer Engineering for the University of Manitoba.
* Description: This file contains the Linux Specific
* serial communication functions.

* Copyright Kyle Geske 1999/2000

*

/1 Include Files

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>
#i ncl ude <fcntl. h>

#i ncl ude <term os. h>
#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <uni std. h>

#i ncl ude <i ostream h>

#i nclude "serial.h"

/1 Local Static Variable and Constants

static int fd;
static struct term os ol d_Ti meouts;

/'l Functions

void Serial _Init(const char* conport, const char* settings)

{
fd = open(conport, O RDAR | O _NOCTTY);
if (fd < 0)
cout << "Error: Could not open " << conport << endl;
}
el se
{

struct term os newti o;
tcgetattr(fd, &l d_Tineouts); /* save current port settings */

bzero(&ewi o, sizeof (newio));
newtio.c_cflag B4800 | CRTSCTS | CS8 | CLOCAL | CREAD;

newtio.c_iflag = | GNPAR;
newtio.c_oflag = 0;
/* set input node (non-canonical, no echo,...) */

newio.c_|Iflag = O;

newti 0. c_cc[VTI MVE]
newtio.c_cc[VMN

5; /* inter-character tinmer unused */
10; /* blocking read until 5 chars received */

69

tcflush(fd, TC FLUSH);
tcsetattr(fd, TCSANOW &newti 0) ;
}
}

bool Send_Serial _Message(const char* nmessage, const int |en)

{

unsi gned | ong returnlen;
int total bytes = 0;

cout << "Seding shit" << endl;
for (int i =0; i < len; i++)

returnlen = wite(fd, &m®essage[il], 1);
total bytes += returnlen;

}

if (total bytes == len)
return true;

el se
return fal se;

int Receive_Serial _Message(char *message, int |en)

{
int total bytes = 0;
int bytesread;
char ch[10];

cout << "Recev shit" << endl;
int limt = (len/ 10) * 10;

whil e(total bytes < linmt)

bytesread = read(fd, ch, 10);
if (bytesread)
{

for (int i = 0; i < bytesread; i++)
message[total bytes+i] = ch[i];

}
tot al byt es += byt esread;

}
el se
br eak;

}
if (total bytes < |len-1)

bytesread = read(fd, ch, len - total bytes);
if (bytesread)
{

for (int i =0; i < bytesread; i++)

{

message[total bytes+i] = ch[i];

total bytes += bytesread;

}
}

70

nessage[total bytes] = 0;
return total bytes;

}
voi d Serial _C eanup()
{
tcsetattr(fd, TCSANOW &ol d_Ti meout s) ;
}

71

serial.h

serial.h
Witen by: Kyle Andrew McGrath Geske

Created as a requirement of my Undergraduate thesis in
Conputer Engineering for the University of Manitoba.

Description: Header files for serial _|Iinux.cpp and
serial _wn.cpp

Copyright Kyle Geske 1999/ 2000

Ll T N I T S T N N B N

/

#i f ndef WAYK_SERI AL_W N_H
#def i ne WAYK_SERI AL_W N_H

void Serial _Init(const char* conport, const char* settings);
bool Send_Serial _Message(const char* nmessage, const int |en);
int Receive_Serial Message(char *message, int |en);

void Serial _C eanup();

#endi f //WAYK_SERI AL_W N_H

72

file_io.cpp

/~k

* file_io.cpp

*

* Witen by: Kyle Andrew McGrath Geske

*

* Created as a requirenent of my Undergraduate thesis in
* Conputer Engineering for the University of Manitoba.

* Description: This file contains functions used to deal
*with filei/o.

* Copyright Kyle Geske 1999/2000

*

/1l Include File

#i ncl ude <stdi o. h>
#i ncl ude <fstream h>
#i ncl ude <string. h>

#include "file_io.h"
#i nclude "tine. h"

/1l Local Static Variables

static char error_file[256];
static char log_file[256];
static char config_file[256];
static fstream error_stream
static fstream | og_stream
static fstream confi g_stream
static bool verbose;

/1 Functions

bool open_file(const char node, const int file_type)

{

swi t ch(node)
{ case 'o'" : if (file_type == ERROR FILE)
error_streamopen(error_file,ios::out);
else if (file_type == LOG FILE)
| og_stream open(log_file,ios::out);
el se

{

cout << "Error: Cannot set this type of file to ouput” << endl;
return fal se;

}

br eak;

case 'a' :
if (file_type == ERROR_FI LE)
{

error_streamopen(error_file,ios::app);

}
elseif (file_type == LOG FILE)

73

}

| og_stream open(log_file,ios::app);

}
el se
{
cout << "Error: Cannot set this type of file to append.” << endl;
return false;
}
br eak;
case 'i' : if (file_type == CONFI G_FI LE)
config_stream open(config_file,ios::in);
el se
{ . . .
cout << "Error: Cannot set this type of file to input." << endl;
return false;
}
br eak;
def aul t

cout << "Error: Unknown file node. File not opened." << endl;
return fal se;

return true;

}

void close_file(const int file_type)

{

if (file_type == ERROR FI LE)

error_streamcl ose();

}
else if (file_type == LOG FILE)

{

| og_stream cl ose();

}
else if (file_type == CONFI G_FI LE)

config_streamcl ose();

el se
{
cout << "Error: Unknown file type." << endl;
}
}
bool wite_file(const char* message, const int file_type, bool date)
{

const char *tinedat e;
fstream *file;

if (file_type == ERROR FI LE)

file = &error_stream

else if (file_type == LOG FILE)

file = & og_stream

el se

{

}

cout << "Error: Cannot wite to this type of file." << endl;
return fal se;

timedate = getTime();

74

if (verbose)
if (date)
{
cout << tinedate << ": ";

cout << nessage;
cout << endl;

}
if (date)

*file << tinedate << ": ";

}
*file << nmessage;
*file << endl;

return true,;

}

const char* read_file(const char delim const int file_type)

if (file_type == CONFI G_FI LE)

t
int i =0;
char ch[1];
static char nessage[256];
message[0] = '\0";

config_streamget (ch[0]);
while (ch[0] !'= delim
if (ch[0] !'= 10)
strncat (message, ch, 1) ;
config_streamget(ch[0]);
i ++;

}

nmessage[i] = "\0";
return nessage;

}
el se
cout << "Error: Cannot read fromthis type of file." << endl;

return ""

}

void set _filenane(const char* filenane, const int file_type)
{ int size = strlen(fil enane);
if (size < 256)
if (file_type == ERROR FI LE)

strncpy(error_file, filenane,size);
error_file[size] = "\0";

}
else if (file_type == LOG FILE)

strncpy(log_file,fil enane, size);

75

log_file[size] = "\0";

else if (file_type == CONFI G FILE)

{
strncpy(config_file, filenane,size);
error_file[size] = '"\0";
el se
{
cout << "Error: Unknown file type." << endl;
}
}
el se

cout << "Error: File nane could not be set. Too |arge";

}

const char* get_filenane(const int file_type)

if (file_type == ERROR _FILE)
return(error_file);

elseif (file_type == LOG FILE)
return(log_file);

else if (file_type == CONFI G FILE)
return(config_file);

el se
{
cout << "Error: Unknown file type." << endl;
return "";
}
}
voi d set _file_verbose(const bool set)
{
ver bose = set;
}

76

file_io.h

/*

* file_ io.h

*

* Witen by: Kyle Andrew McGrath Geske

*

* Created as a requirenent of my Undergraduate thesis in
* Conputer Engineering for the University of Manitoba.
* Description: Header File for file_io.cpp. Defines

* macros for error |ogging.

* Copyright Kyle Geske 1999/2000

*

/

#i f ndef WAYK FILE IO H
#define WAYK FILE IO H
#i ncl ude <fstream h>

#define ERROR _FI LE 1
#define LOG FILE 2
#define CONFI G FILE 3

#defi ne ERROR_REPORT(nsg) wite file(msg, ERROR FILE, true)
#define LOG REPORT(nsg) wite file(msg, LOG FILE, true)

bool open_file(const char node, const int file_type);

void close_file(const int file_type);

voi d set_filenane(const char* filenane, const int file_type);

const char* get_filenane(const int file_type);

bool wite_file(const char* message, const int file_type, bool date);
const char* read_file(const char delim const int file_type);

void set_file_verbose(const bool set);

#endi f //WAYK FILE | O H

77

time.cpp

/*

* time.cpp

*

* Witen by: Kyle Andrew McGrath Geske

*

* Created as a requirenent of my Undergraduate thesis in
* Conputer Engineering for the University of Manitoba.
* Description: This file contains a function which

* returns a nicely formatted date string.

* Copyright Kyle Geske 1999/2000

*

/1 Include Files

#i ncl ude <tine. h>
#i ncl ude <stdi o. h>

/1 Functions

const char* getTine()
{
char *wday_nane[7] = {"Sun","Mn","Tue","Wed", "Thr","Fri","Sat"};
char *mon_nane[12] =
{"Jan", "Feb","Mar", " Apr", " May", "Jun","Jul ", " Aug", " Sep","Cct", "Nov", "Dec"};

static char tinedate[30];
char *ptr = tinmedate;

tinme_t tod;
tod = time(& od);
tm*tinmeptr = |localtinme(&od);

ptr += sprintf(ptr,"%",wday_nane[tinmeptr->tmwday]);
ptr += sprintf(ptr,” %", mon_nanme[timeptr->tmnon]);
ptr += sprintf(ptr," %", tineptr->tmnday);

ptr += sprintf(ptr," %l:",timeptr->tmhour);

ptr += sprintf(ptr,"%l:",timeptr->tmmn);

ptr += sprintf(ptr,"%l ",timeptr->tmsec);

ptr += sprintf(ptr,"%l", 1900 + tinmeptr->tmyear);

return tinedate;

78

time.h

time.h
Witen by: Kyle Andrew McGrath Geske

Created as a requirement of my Undergraduate thesis in
Conputer Engineering for the University of Manitoba.

Description: Header files for time.cpp

Copyright Kyl e Geske 1999/ 2000

EE R S R I N B N

/

#i fndef WAYK_TI ME_H
#def i ne WAYK_TI ME_H

const char* getTinme();

#endi f

79

kbhit.c

/*

* kbhit.c

*

*

*

* Description:

* under |inux.

*/
#i nclude <term os. h>
#i ncl ude <signal.h>
#include <stdlib. h>
#i ncl ude <stdio.h>
#i ncl ude <unistd. h>
#include <sys/tine.h>
#i ncl ude <sys/types. h>

static struct term os

/*
/*

new t erm nal

initial

Witen by: Unknown programm ng in The Linux Journal

Al'l ows the kbhit() function to be used

state for

settings

restoring |ater

/* Restore termsettings to those saved when terminit was called */

void termrestore

(void)

tcsetattr(0, TCSANOW & nitial);
} /* termrestore */

/* Clean up termnal;

void termexit () {
termrestore();
} /¥ termexit */

I* WII

void termctrlz () {

si gnal (Sl GTSTP,

termrestore();

kill (getpid(),

} /* termctrlz */

[* WII

termctrlz);

SI GSTOP) ;

called on exit

be called when ctl-z is pressed,

*/

80

*/
*/

this correctly handles the term nal

be cal | ed when application is continued after having been stopped */

*/

*/

*/

*/

*/

void termcont () {
si gnal (SI GCONT, termcont);
tcsetattr(0, TCSANOW ¤t);
} /* termcont */

/~k ___ */
void terminit (void) {
/* if stdinisn't atermnal this fails. But */

/* then so does tcsetattr so it doesn't matter. */

tcgetattr(0, & nitial);

current = initial; /* Save a copy to work with later */
signal (SIG NT, termexit); /* We _must_ clean up when we exit */
signal (SIGQUIT, termexit);

signal (SI GTSTP, termctrlz); /[* Ctrl-Z nust al so be handl ed */

signal (SI GCONT, termcont);
atexit(termexit);
} o/* terminit */

/* ___ */

/* Set character-by-character input node */

void termcharacter (void) {
/* One or nore characters are sufficient to cause a read to return */
current.c_cc[VMN| =1;
current.c_cc[VTIME] = 0; /* No tineout; read forever until ready */
current.c_Ilfl ag &= ~I CANON,; /* Line-by-line node off */
tcsetattr(0, TCSANOW ¤t);

} /* termcharacter */

/* Return to |line-by-line input node */

void termline (void) {
current.c_cc[VEOF] = 4;
current.c_Ilflag | = 1 CANON;
tcsetattr (0, TCSANOW ¤t);
} /* termline */

/* Key pressed ? */

int kbhit (void) {
struct tinmeval tv;

fd_set read_fd;
/* Do not wait at all, not even a m crosecond */
tv.tv_sec = 0;

tv.tv_usec = 0;

/* Must be done first to initialize read_fd */

81

}

FD_ZERQ(& ead_f d);

/* Makes select() ask if input is ready; O is file descriptor for stdin */

FD _SET(0, &read_fd);

/* The first paraneter is the nunber of the largest fd to check + 1 */
if (select(l, &ead_fd,

NULL, /* No wites */
NULL, /* No exceptions */
&v) == -1)
return(0); /* an error occured */
/* read_fd now holds a bit map of files that are readable. */
/* W& test the entry for the standard input (file 0). */
return(FD_I SSET(0, & ead_fd) ? 1 : 0);
[* kbhit */

82

kbhit.h

/*

* kbhit.h

*

* Witen by: Unknown programr ng in The Linux Journa
*

*

* Description: Header file for kbhit.c

*

*

/

#include <termnios.h>
#i ncl ude <signal.h>

#i nclude <stdlib.h>

#i nclude <stdio. h>

#i ncl ude <unistd. h>
#include <sys/tine.h>
#i ncl ude <sys/types. h>

void termrestore (void);
void termexit ();

void termctrlz ();

void termcont ();

void terminit (void);
void termcharacter (void)
void termline (void);

int kbhit (void)

83

data.cfg

/1 dient Configuration File

ERRORFI LE! error. | og!

LOGFI LE! ops. | og!

COMPORT! Com!

COVSET! baud=4800 parity=0 data=8 stop=1!
PVTI ME! 0000!

LNTI ME! 0150!

| DNUM 1001!

SERVERI P! 207. 161. 231. 161!

SERVERPORT! 31337!

END! END!

Appendix C - Server Source Code (Java)

GPSserver.java

GPSserver. java
Witten by: Kyle Andrew MG ath Geske

Created as a requirement of my undergraduate thesis in
Conput er Engi neering for the University of Manitoba.

Description: The nmain programclass which spawns the
server threads and the front-end GU .

Copyright Kyle Geske 1999/2000

E R S I I R R R

~

inmport java.io.*;
inmport java.net.?*;

public class GPSserver
{
public static void main(String args[])

{

location_file locationFile = new location_file("locations.txt");

history _file historyFile = new history_file("history.txt",|ocationFile);
historyFile.initH story();

| ocationFile.initLocations();

status_vector excepti ons = new status_vector();

status_vector webStatus = new status_vector();
server _thread web_t hread = new
server _t hread(80, | ocationFil e, historyFil e, webSt at us, exceptions, 1) ;
web_thread. start();
status_vector dataStatus = new status_vector();
server_thread data_thread = new
server _t hread(31337, | ocati onFil e, hi storyFi | e, dat aSt at us, excepti ons, 2);
data_thread.start();
new gps_Ul (| ocati onFil e, hi storyFi | e, webSt at us, dat aSt at us, excepti ons) ;
}

}

85

gps_coords.java

/* gps_coords. java

*

* Witten by: Kyle Andrew McG ath Geske

* Created as a requirenent of my undergraduate thesis in

* Conputer Engineering for the University of Manitoba.

*

* Description: A class created to handle |ongitude/latitude
* co-ordinates. Includes a hel per nethod to cal culate the
* di stance between two | ongitude/latitude co-ordinate sets.
* Copyright Kyle Geske 1999/2000

*

~

inmport java.io.*;

public class gps_coords

{
private doubl e | ongitude;
private double |atitude;

private char eastWst; // For Longitude
private char northSouth; // For Latitude
private int |ongDegree;

private int |ongM nute;

private int |ongSecond;

private int |atDegree;

private int |atM nute;

private int |atSecond;

private String ti meOrLocati on;

/*
gps_coords(doubl e |1 on, double |at)

This constructor is to be used with decinal degress
eg: -49.1234,97.4321
*/

public gps_coords(double lat, double lon, String tineO Location)

{

this.timeO Location = tinmeOrLocation;

| ongi tude = | on;

latitude = lat;

if (latitude > 0)
northSouth = 'N ;

el se

{

northSouth = 'S';
latitude *= -1;
}

86

}
/*

if (longitude > 0)

east\West = 'E' ;
el se
{

east Wst ='W,

| ongi tude *= -1;
}

int coords[] = newint[3];

convert (1 ongi t ude, coords);

| ongDegree = coords[0];
| ongM nute = coords[1];
| ongSecond = coords[2];

convert (|l atitude, coords);
| at Degree = coords[O0];
lat M nute coords[1];
| at Second coords[2] ;

gps_coords(int latDeg, int latMn, int

| ong

This constructor

M n, int longSec, char ew)

| at Sec, char ns, int longDeg, int

is to be used when the gps coordi nates have been split into

degrees, mnutes, seconds and direction.

*/

public gps_coords(int

i nt

{

}
/*

| at Deg,

int latM

n, int latSec, char ns, int |ongDeg,

longM n, int |longSec, char ew, String timeOrLocation)

this.timeO Location = ti meOrLocati on;

east West = ew,

nort hSouth = ns;

| ongDegree = | ongDeg;
I ongM nute = | ongM n;
| ongSecond = | ongSec;
| at Degree = | at Deg;
latMnute = [atM n;

| at Second = | at Sec;

| ongi tude =

| ongDegree + ((double)l ongM nute + (doubl e)l ongSecond/60)/ 60;

latitude = | atDegree + ((double)latMnute + (doubl e)l at Second/60) /60;

longitude = (ns == 'S)? |longitude :
latitude = (ew == "W)? latitude : -I

gps_coords(String | atlong)

87

-l ongi t ude;
atitude;

This constructor is to be used with a formatted GPS string.

eg: 36°66'6"S 76°6' 66" W

*/
public gps_coords(String |atlong)
{
int loc = latlong.indexOf("°");
| at Degr ee = Integer.parselnt(latlong.substring(0,loc));
int loc2 = latlong.indexOF(""");
latM nute = Integer.parselnt(latlong.substring(loc+1,10c2));
loc = latlong.indexOF((char)34);
| at Second = | nteger.parselnt(latlong.substring(loc2+l,10c));
northSouth = I atl ong. char At (| oc+1);
loc = latlong.indexOr(" ");
loc2 = latlong.indexOf("°',loc);
| ongDegree = Integer.parselnt(latlong.substring(loc+l,!|o0c2));
loc = latlong.indexOr (""", loc2);
Il ongM nute = Integer. parselnt(latlong.substring(loc2+1,10c));
loc2 = latlong.indexO ((char)34,1o0c);
I ongSecond = I nteger.parselnt(latlong.substring(loc+l,10c2));
east Wst = | atl ong. char At (| oc2+1);
ti meOrLocation = latlong.substring(loc2+3,1atlong.length());
I ongi tude = | ongDegree + ((double)longM nute + (doubl e)l ongSecond/60)/ 60;
latitude = | at Degree + ((double)latM nute + (double)l at Second/60)/60;
}
/*

public gps_coords(String lat, String lon, String tinmeO Location)

This constructor is to be used with latitude and |ongitude strings
provi ded by the ACElIl receiver.

eg.

| at = SBBCCCCC
| on = SDDDEEEEE
S = +/-

Deci mal pl ace added between B&C and D&E.

*/
public gps_coords(String lat, String lon, String tinmeO Location)

this.tinmeOLocation = tinmeO Location;

if (lat.charAt(0) == "'+")
northSouth = 'N ;

el se
northSouth = 'S';

if (lon.charAt(0) == "+")
east West = 'E';

el se

east West ='W ;

latitude = (doubl e)lnteger.parselnt(lat.substring(1,8))/100000;
| ongi tude = (doubl e) I nteger. parselnt(lon.substring(1,9))/100000;

88

int coords[] = newint[3];

convert (| ongi tude, coords);
| ongDegree = coords[0];
| ongM nute = coords[1];
| ongSecond = coords[2];

convert (Il atitude, coords);

| at Degree = coords[0];
latM nute = coords[1];
| at Second = coords[2] ;
}
/*

convert (doubl e value, int coords[])

This nethod takes in a longitude or latitude in decinal degrees
and converts it places degree, mnute and second infornation

in the coords array. The second information is decinally truncated
since the GPS reciever has a accuracy of 100m 95% of the tine and
one second is equal to approximatly 30 neters at the equator

*/

private void convert(doubl e val ue,int coords[])
{
coords[0] = (int)val ue;
double tenpM n = value - (float)coords[O0];
tempM n *= 60;
coords[1] = (int)tenmpM n;
doubl e tenpSec = tenpM n - (float)coords[1];
tenpSec *= 60;
coords[2] = (int)tenpSec;

}
public doubl e getLongitude()
{
return this.longitude;
}
public doubl e getlLatitude()
{
return this.latitude
}
/*

doubl e di stance(gps_coords coordl, gps_coords coord2)

A hel per nethod used to calculate the distance in neteres
between to longitude/latitude co-ordi nate sets.

*/
public static final double distance(gps_coords coordl, gps_coords coord2)

{
double lat1l

double lat2
doubl e | onl
doubl e | on2

Mat h. t oRadi ans(coordl. get Latitude(
Mat h. t oRadi ans(coor d2. get Lat it ude(
Mat h. t oRadi ans(coor dl. get Longi t ude
Mat h. t oRadi ans(coor d2. get Longi t ude

~—~ ~—

)

)
)

)
)
)
)

—~

89

double d = 2*Mat h. asi n(Mat h. sqrt (Mat h. pow((Math.sin((latl-lat2)/2)),2) +
Mat h. cos(| at 1) *Mat h. cos(| at 2) *Mat h. pow((Mat h. si n((l onl-10n2)/2)), 2)));

d = Mat h. abs(Mat h. toDegrees(d) * 111132.95);

return d;
}
public String toString()
{
return this.toString(false);
}
public String toString(bool ean descriptions)
{

String tempString = "";

if (descriptions)

tempString = "Latitude: " + latDegree + "°" + latMnute + "'" +
| at Second + (char)34 + northSouth + " ";
tenpString += "Longitude: " + longDegree + "°" + |longMnnute + """ +
I ongSecond + (char)34 + eastWest + " " + tineOrLocation;
el se
{
tempString = |l atDegree + "°" + latMnute + """ + | atSecond + (char)34 +
northSouth + " ";
tenpString += | ongDegree + "°" + longMnute + "'" + | ongSecond +
(char)34 + eastWest + " " + tinmeOlLocation;

return tenmpString;
}

90

gps_file.java

L I S S R L N B N N I

gps_file.java
Witten by: Kyle Andrew McGrath Geske
Created as a requirenent of my undergraduate thesis in
Conput er Engi neering for the University of Manitoba.
Description: A base class to be used for file
mani pul ation. This class is further extended by
the history file, html _file and location file
cl asses.
Copyright Kyle Geske 1999/ 2000
/

inport java.io.*;

public class gps_file

{

"\

String fil eNaneg;
Lock fileLock = new Lock();

public gps_file(String fil eNane)

{
this.fileName = fil eNane;

FilelnputStreamfs = null;
int fileLength = 0;

try

{
fs = new Fil el nput Strean(fil eNane);

catch (Fil eNot FoundException fnfe)
{

try

{

FileQutputStreamtenp = new Fil eQutputStream(fil eNane);

tenp. cl ose();
fs = new Fil el nput Streanm(fil eNan®) ;
fileLength = fs.available();

catch (Exception e)

Systemout.println("Error: Could not find or open data file:

n");

}
}

try

Systemexit(1);

fs.close();

catch (Exception e)

Systemout.printIn("Error: Could not close file: " + e +"

}
91

Co+

e

} // end gps_file constructor

public String read()
{

String readbData = "";

/'l lock readers
fileLock.!lock();
try

FilelnputStreamfs = new Fil el nput Strean(fil eNane);
int fslength = fs.avail abl e();

for (int i =0; i < fslength; i++)

char ch = (char)fs.read();

if (ch =="'\n")
readData += "!"
el se

readData += ch;

readData += "!";
fs.close();
catch (Exception e)

Systemout.println("Error: Could not read fromdata file:

}

fileLock. rel easeLock();

return readDat a;
}
public void wite(String gpsEntry, bool ean append)

{
filelLock.!lock();

+ e +

try
{
Fil eQutput Stream fs = new Fi |l eCut put Strean{fil eNane, append) ;
for (int i =0; i < gpsEntry.length(); i++)
fs.wite((int)gpsEntry.charAt(i));
}
fs.flush();
fs.close();

catch (Exception e)
Systemout.println("Error: Could not wite to data file:

}
fileLock.rel easeLock();

92

+ e + "

s

history file.java

/* history_file.java

*

* Witten by: Kyle Andrew McG ath Geske

* Created as a requirenent of ny undergraduate thesis in
* Conputer Engineering for the University of Manitoba.
*

* Extends: gps_file

*

* Description: This class is used to nmanipul ate the

* file which contains all uploaded gps info. To save
* on filei/o the information is stored in a circul ar
* menory buffer until the programis closed. The size
* of the buffer is controlled by the H STORYSI ZE

* vari abl e.

*

* Copyright Kyle Geske 1999/ 2000

*

*/

inport java.io.*;

public class history file extends gps_file
{
public static final int H STORYSIZE = 100;
private gps_coords history[];
private int numtens;
private int tail Pointer;
private int headPointer;
private bool ean roll ed;
private location_file |locationFile;

public history file(String fileNane, location_file |ocationFile)
{

super (fil eNane);

hi story = new gps_coords[H STORYSI ZE] ;

headPoi nter = 0;

tail Pointer = 0;

numtens = O;

rolled = fal se;

this.locationFile = locationFile;
}
public void initH story()
{

String hisString = read();
if (hisString.length() <= 1); // Do not hing.
el se

int loc = 0,l0c2 = 0;

whi | e(true)
{ loc = 1oc2;
loc2 = hisString.indexOh("!",loc);
if (loc2 == -1)
br eak;
addCoor d(new gps_coords(hisString.substring(loc,loc2)));
| oc2++;
}

93

}
} // init_history

public void addCoor d(gps_coords newCoor d)
{

hi story[tail Pointer] = newCoord;

tai | Poi nt er ++;

if (tail Pointer == H STORYSI ZE)

{

tail Pointer = 0;

}

if (numtens < H STORYSI ZE)
num t ens++;

if (tail Pointer == headPoi nter)

headPoi nt er ++;
rolled = true;
i f (headPointer == H STORYSI ZE)
headPoi nter = 0;
}

}

public void dunpHistory()
{
String crlLf
String text
int index = 0;
wite("",fal se);

"\'n";

try
{
for (int i=0; i < numtens; i++)
{ i ndex = headPointer + i;
if (rolled)
i ndex--;

if (index > H STORYSI ZE -1)
i ndex -= Hl STORYSI ZE;

if (i == numtens - 1)
crLf =",

if (index >= 0)

{

text += history[index];
if (index < 0)
{

text += history[H STORYSI ZE- 1] ;
}

text += crlLf;

wite(text,false);

catch(Exception e)

Systemout.println("Could not dunp history["+index+"] : " + e);
}
}
public String toString()
{

return this.toString(false);

94

}

public String toString(boolean htm)

{
String crLf = "\n"
String text =
int index = 0;
try
{
for (int i=0; i < numtens; i++)
{
i ndex = headPointer + i;
if (rolled)
i ndex--;
if (index > HI STORYSI ZE -1)
i ndex -= H STORYSI ZE
if (i == numtenms - 1)
crLf =",
if (index >= 0)
{
text += | ocationFile. knownLocation(history[index],htm) + crLf;
}
if (index < 0)
{
text += | ocationFile.knownlLocation(history[H STORYSI ZE - 1], htm) +
crLf;
}
}
} .
catch (Exception e)
{
Systemout. println("Could not read history["+i ndex+"] : " + e);
}
finally
{
return text;
}
}

95

location_file.java

/* location_file.java

*

* Witten by: Kyle Andrew McG ath Geske

* Created as a requirenent of ny Undergraduate thesis in
* Conputer Engineering for the University of Manitoba.
*

* Extends: gps_file

*

* Description: This class is used to mani pul ate

* the file which contains all the uploaded |ocation

* data info. To save on file i/o the information is

* sroted in a nmenory vector during program operation.
* Copyright Kyle Geske 1999/ 2000

*

*

~

inmport java.io.*;
inmport java.util.*;

public class location_file extends gps_file
{

private Vector |ocations;

public location_file(String fil eNane)

super (fil eNane);
| ocations = new Vector();

}
public void initLocations()
{
String locString = read();
int loc = 0,lo0c2 =0;
whi | e(true)
{
loc = loc2;
loc2 = locString.indexOh("!'",1oc);
if (loc2 == -1)
br eak;
| ocati ons. addEl enent (new gps_coords(l ocString. substring(loc,loc2)));
| oc2++;
loc = loc2;
loc2 = locString.indexO("!",1oc);
if (loc2 == -1)
br eak;
| ocati ons. addEl ement (1 ocString. substring(loc,loc2));
| oc2++;
loc = loc2;
}
}

public void addLocati on(gps_coords gpsCoords, String distance)
{

| ocati ons. addEl enent (gpsCoor ds) ;
| ocati ons. addEl enent (di st ance) ;

}

96

public String knownLocation(gps_coords gpsCoords, boolean htm)
{

String returnString ="";
int |oc;

for(int i=0; i< locations.size(); i+=2)
{
gps_coords tenpCoords = (gps_coords)locations.elementAt(i);
doubl e d1 = gps_coords. di stance(tenpCoords, gpsCoor ds) ;
doubl e d2 = Doubl e. parseDoubl e((String)l ocations.elenentAt(i+1));
if (di <= d2)
{
String string2 = tenpCoords.toString(false);
loc = string2.indexOF (" ');
loc = string2.indexOr(* ', loc+l);
String location = string2.substring(loc+1,string2.length());

returnString += location + " : ";

}

}
if (htm)
returnString = "" + returnString + "";
return returnString + gpsCoords.toString();
}

public void dunpLocations()
{
String crLf = "\n";
wite("",fal se);
for(int i=0;i < locations.size();i++)

{
wite((gps_coords)locations.elenentAt(i) + crLf,true);
if (i == locations.size() -2)
crLf =",
wite((String)locations.elementAt(++i) + crLf,true);
}
public String toString()
{
return |l ocations.toString();
}

97

html_file.java

htm _file.java
Witten by: Kyle Andrew McGrath Geske

Created as a requirenent of my Undergraduate thesis in
Conput er Engi neering for the University of Manitoba.

Ext ends: gps_file

Description: This class is used to manipul ate
the htm files displayed to the user.

Copyright Kyle Geske 1999/ 2000

L I S T N N I B N N I N

~

inport java.io.*;

public class htm _file extends gps_file

{
htm _file(String fil enane)

super (fil enanme);

public String read()

{
return read("No Such User","No Such User");

}
public String read(String titleString, String dataString)
String readbData = "";

/'l lock readers
fileLock.!lock();
try
{
FilelnputStreamfs = new Fil el nput Strean(fil eNane);

int fslength = fs.avail abl e();

int i =0;
while (i < fslength)
{
String line = readln(fs);
if (line.startsWth("<ADDTI TLE>"))
readData += "<TITLE>"+titleString+"</ Tl TLE>";
else if (line.startsWth("<ADDl NFO>"))
readData += htnlize(dataString);
el se
readData += i ne;
i +=line.length() + 1;
fs.close();
}
catch (Exception e)
{

98

Systemout.println("Error: Could not read fromdata file:

}

fileLock.rel easeLock();

return readDat a;

}

private String readl n(Fil el nputStream fs)

{
String readbData = "";

char ch ="' ';
whi | e(true)

{
try
ch = (char)fs.read();

}
catch (Exception e)
{

Systemout.println("Could not read fromhtm file:

}
if (ch!="\n")
readData += ch;
el se
br eak;

}

return readDat a;

}
private String htmize(String textData)

String htm Data = "";
for (int i =0; i <textData.length(); i++)

if (textData.charAt(i) == '\n")
htm Data += "
" + "\n";

el se
htm Data += textData.charAt(i);

}

return htnl Dat a;
}

99

St e):

Lock.java

Lock. j ava
Witten by: Christopher M Cee
http://journal.iftech.confarticles/threadsync/default.asp

Description: This class can be used to contro
si mul t aneous access to java resources.

EE G I

~

cl ass Lock extends bject

{
private bool ean mblLocked = fal se;
public synchronized void | ock()
{
/1 if sone other thread | ocked this object then we need to wait
/1 until they release the |ock
if(mbLocked)
{
do
{
try
{ . . .
/1 this releases the synchronized that we are in
/1 then waits for a notify to be called in this object
/'l then does a synchroni zed agai n before continuing
wai t () ;
catch(InterruptedException e)
{
e.printStackTrace();
catch(Exception e)
{
e.printStackTrace();
} while(mbLocked); /1 we can't leave until we got the
| ock, which

/1 we may not have got if an
exception occured

}

m bLocked = true;

}

public synchroni zed bool ean | ock(long m|liSeconds)

if(mbLocked)
{
try

wait(mlliSeconds);

catch(InterruptedException e)

{
}

e.printStackTrace();

100

i f(mbLocked)
{

}

return false;

}

m bLocked = true;
return true;

}
public synchroni zed bool ean | ock(long mlliSeconds, int nanoSeconds)
{
if(mbLocked)
{
try
{
wai t(mlliSeconds, nanoSeconds);
catch(InterruptedException e)
{
e.printStackTrace();
}
i f(mbLocked)
{
return fal se;
}
}
m bLocked = true;
return true;
}

public synchroni zed voi d rel easeLock()
if(mbLocked)

m bLocked = fal se;

notify();
}
public synchroni zed bool ean i sLocked()
i return mblLocked;

101

server_thread.java

/* server_thread.java

*

* Witen by: Kyle Andrew McG ath Geske

* Created as a requirenent of ny Undergraduate thesis in
* Conputer Engineering for the University of Manitoba.
*

* Description: This thread handl es the incom ng data
* connections fromthe GPS client or froma web

* pbrowser. Once the connection is established, the

* thread passes the socket to an instance of the

* data_sever or web _server cl ass.

*

* Copyright Kyle Geske 1999/ 2000

*

*

~

inport java.io.*;
inmport java.net.*;

public class server_thread extends Thread

-
int port;
int type;
Socket sock;
Server Socket servsock;
location_file locFile;
history_file hisFile;
status_vector statusVector, exceptVector;
public server_thread(int port,location_file locFile,history file
hi sFil e, status_vector statusVector, status_vector exceptVector, int type)

{
this.type = type;
this.port = port;
this.locFile = |l ocFile;
this.hisFile = hisFile;
this.statusVector = statusVector;
t hi s. except Vector = except Vect or;

}
public void run()
{
try
{
servsock = new Server Socket (port);
}
catch (Exception e)
{
except Vector.addltem(tine.getTime() + ": Could not create Server Socket:
" + e);
}
whi | e(true)
{
try
{

sock = servsock. accept();

102

if (type == 1) // ie a web server
{

web_server ny_server new

web_server (sock, | ocFil e, hisFile, statusVector, exceptVector);
my_server.start();

2) 11

else if (type ie a data server
{

data_server ny_server new

dat a_server (sock, | ocFil e, hi sFi |l e, statusVect or, except Vect or)
my_server.start();
}

el se

{
}

Systemout.println("Error: This server type does

catch (Exception e)

{
except Vector.addl ten(tine.getTine() + ":
+e+"\n");

}
}

Coul d not

103

not exist");

spawn new server:

web_server.java

/* web_thread. java

*

* Witen by: Kyle Andrew McG ath Geske

* Created as a requirenent of my Undergraduate thesis in
* Conputer Engineering for the University of Manitoba.
*

* Description: This thread handl es the incom ng

* HTTP web requests by serving the gps data

* as a web page.

* Copyright Kyle Geske 1999/2000

*

*/

inmport java.io.*;
inport java.net.*;

public class web_server extends Thread

{

private Socket sock;

private PrintWiter out;

private |nputStreanReader inr;

private BufferedReader in;

private location_file |ocFile;

private history file hisFile;

private status_vector webStatus, except St at us;
private htm _file htm File;

public web_server(Socket sock,location_file locFile, history_file
hi sFil e, status_vector webStatus, status_vector except Status)
{
this.sock = sock;
this.locFile = locFile;
this.hisFile = hisFile;
this. webStatus = webStat us;
this. except Status = except St at us;
htm File = new htm _file("userhtm .txt");
try
{
inr = new | nput StreanReader (sock. get | nput Strean());
in = new Buf feredReader (inr);

out = new PrintWiter(sock.getQutputStrean(),false);

catch (Exception e)

except Status. addltem(time.getTime() + ": Could not create web_server: "
+e);
}
}
private void httpHeader()
{

out.println("HTTP/ 1.1 200 OK");
out.println("Server: Way-K/ 0.1 (Java)");
out.println("Connection: close");
out.println("Content-Type: text/htm");
out.println("");

104

private String isol ateRequest(String theRequest)

{
String request = theRequest;

int first = request.indexOf(" ') + 1; // First location of a space
int last = request.lastlndexCOf (" '); [// Last location of a space
request = request.substring(first,last); // |lsolate the request.

if (request.length() !'=1) // If it's not a root request strip the '/
{

last = request.length();
if (request.endsWth("/"))
{
last = request.lastlndexCOf('/");

}

request = request.substring(1,!ast);

}

return request;

}

public void run()

{
try
{
String line = in.readLine();
line = isol ateRequest (line);

ht t pHeader () ;

bool ean asking = true; // |Is the user still sending the request
bool ean once = true; // Has enter been pressed once

whil e(asking) //Read in the web browsers request string. W do not use
this information.

char ch = (char)in.read();

if (ch == "\r")
/1 Systemout.printin("");
if (once)
{
asking = fal se;
}
el se
{
once = true;
}
else if (ch =='\n"); // do nothing.
el se
{
once = false;
}

105

}
out.print(htmFile.read(line + " GPS history",hisFile.toString(true)));
out.flush();
webSt atus. addl tenm(time.getTime() + ": Served a web page: " +
sock. get | net Address());

cat ch(Exception e)

except Status. addlten{tine.getTine() + ": Could not serve web page: " + e
+ "\n"); // Renove |38r.
}
finally
{
try

sock. cl ose();
}
catch (Exception e)

/1 Do nothing. Sonetinme the socket will already be peer closed.

}
}

106

data_server.java

/* data_server.java

*

* Witten by: Kyle Andrew McG ath Geske

* Created as a requirenent of ny undergraduate thesis in
* Conputer Engineering for the University of Manitoba.
*

* Description: This thread parses incom ng data and

* adds information to the history and | ocation files.
*

* Copyright Kyle Geske 1999/ 2000

*

*

~

inport java.io.*;
inmport java.net.*;

public class data_server extends Thread

{

private final static String password = "letnein"; // HAHA
passwor d!

private Socket sock;

private PrintWiter out;
private |nputStreanReader inr;
private BufferedReader in;
private location_file |ocFile;
private history file hisFile;

private status_vector dataStatus, exceptStatus;

Quite a difficult

public data_server(Socket sock,location_file locFile, history file

hi sFil e, status_vector dataStatus, status_vector except Status)

{

this.sock = sock;

this.locFile = |l ocFile;

this.hisFile = hisFile;

t hi s. dat aSt at us = dat aSt at us;

this. except Status = except St at us;

try

{
inr = new | nput StreanReader (sock. get | nput Stream());
in = new Buf feredReader (inr);
out = new PrintWiter(sock.getCQutputStrean(), fal se);

catch (Exception e)

except Status. addl ten(tine.getTine() + ": Could not

+ e);

}
}

/*
void run()

create data_server:

If the password received is vailid a string of the followi ng structure will

be parse.

##ACCCDDDDDEEEEFFFFF{ Gt

107

##1.+4912345+09754321Pi zza Pl ace@00

A is message type. 'H = history log 'L' = location |og

CCCDDDDD = | atitude

EEEEFFFFF = | ongi t ude

{G is the history tinme for nessage type 'H and location for nessage type
oL

If message is of Type L the location will also include a radius.
Locat i on@Radi us

*/
public void run()
{

try

{

String ip = sock.getlnetAddress().toString();
String line = in.readLine();
if (line.equal s(password))

line = in.readLine();
if (line.charAt(0) =="#")
{
String latitude = |ine.substring(3,11);
String longitude = line.substring(11, 20);
String timeOrLocation = line.substring(20,line.length());

String radius = "";

int loc = timeO Location.indexOh("@);

if (loc !=-1)

{
radius = timeOrLocation. substring(loc+1,timeO Location.length());
timeOrLocation = tineO Location. substring(0,loc);

}

gps_coords nyCoords = new

gps_coords(l atitude, | ongitude, ti meOrLocation);

if (line.charAt(2) == "H)
hi sFi | e. addCoor d(nyCoor ds) ;
dataStatus.addlten{tine.getTinme() + ": Successfully Received
Hi story Data : " + ip);
/| dataStatus.addlten(myCoords.toString());
}
else if (line.charAt(2) =="L")
| ocFi |l e. addLocat i on(myCoor ds, r adi us) ;
dataStatus.addlten{tine.getTine() + ": Successfully Received
Location Data : " + ip);
dat aSt at us. addl tenm(nyCoords + " : " + radius);
}
el se
dataStatus.addltenm(tine.getTine() + ": Unsuccessfully Received
Data : " +ip);
}
}
el se
dataStatus. addlten(tine.getTine() + ": Unsuccessfully Received Data
Ctip);
}
el se
{

108

dataStatus.addlten(tine.getTime() + ": Incorrect Password : " + ip);

}
} _
cat ch(Exception e)
{
except Status. addlten(tine.getTine() + ": Could not downl oad GPS dat a:
+ e);
b
finally
{
try
{
sock. cl ose();
catch (Exception e)
/1 Do nothing. Sonetinme the socket will already be peer closed.
}
}
}
}

109

time.java

tine.java
Witen by: Kyle Andrew McG ath Geske

Created as a requirement of mnmy Undergraduate thesis in
Conput er Engi neering for the University of Manitoba.

Description: A class used to fetch the current
time and data of the host conputer.

Copyright Kyl e Geske 1999/ 2000

EE R I I T R R R

~

inmport java.util.Cal endar;
inmport java.util.GegorianCal endar;

public class tine

{
private static final String dayNanes = "SunMonTueWedThuFri Sat";
private static final String nmonthNanes =

"JanFebMar Apr MayJunJul AugSepCct NovDec";

private static String dateParse(int position, boolean dayEl seMonth)
{
String tenpString = (dayEl seMont h)? dayNames : nont hNanes;
return(tenpString. substring(position*3, (position*3)+3));
}

public static String getTi me()
{
Cal endar theCal endar = new GregorianCal endar();
int seconds = theCal endar. get (Cal endar. SECOND) ;
int mnutes = theCal endar. get (Cal endar. M NUTE) ;
int hours = theCal endar. get (Cal endar. HOUR_OF_DAY) ;
int dayOf Week = theCal endar. get (Cal endar. DAY_OF VEEK) ;
int nonth = theCal endar. get (Cal endar. MONTH) ;
int dayOf Month = theCal endar. get (Cal endar. DAY_OF_MONTH) ;
int year = theCal endar. get (Cal endar. YEAR);

String sMnutes
String sSeconds

(mnutes<10)? "0" + mnutes : "" + mnutes;
(seconds<10)? "0" + seconds : "" + seconds;

return(dat eParse(dayOf Week-1,true) + " " + dateParse(nonth,false) + "
dayOf Month + " " + hours + ":" + sMnutes + ":" + sSeconds + " " + year);

}

110

status_vector.java

status_vector.java
Witen by: Kyle Andrew McG ath Geske

Created as a requirenent of my Undergraduate thesis in
Conput er Engi neering for the University of Manitoba.

Description: A specialized vector to allow infornation
sharing between the programthreads and the GU .

Copyright Kyl e Geske 1999/ 2000

EE I I I T R R R

~

inmport java.util.*;
inmport java.io.*;

public class status_vector

{

private Vector status;

private int readPtr;

private bool ean updat ed;

private bool ean enabl e;

private Lock vectorLock = new Lock();

status_vector ()

{

status = new Vector();
readPtr = 0O;

updated = fal se;
enable = true;

}

public void set Enabl ed(bool ean enabl ed)

{
enabl e = enabl ed;
this.clear();

}

public void clear()
{ vect or Lock. | ock();
status.clear();
readPtr = 0;
updat ed = fal se;
vect or Lock. rel easeLock();

}
public void addltem(String update)
if (enable)
{ vect or Lock. | ock();
updated = true;

st at us. addEl enent (updat e) ;
vect or Lock. r el easelLock();

111

public bool ean changed()

{
return updat ed;
}
public String readUpdate()
{
String update = "";
if (enable)
{
vect or Lock. | ock();
updated = fal se;
int i;
for (i =0; i < (status.size()-readPtr); i++)
update += (String)status.elenmentAt(i+readPtr) + "\ n";
readPtr = readPtr + i;
vect or Lock. rel easeLock();
}
return update;
}
public String toString()
{
return status.toString();
}

112

gps_Ul.java

/* gps_Ul.java

*

* Witten by: Kyle Andrew McG ath Geske

* Created as a requirenent of my undergraduate thesis in
* Conput er Engineering for the University of Manitoba.
*

* Description: The Graphical User Interface for the

* server. Allows the user to nonitor web traffic

* as well as traffic fromthe GPS client application.
* Copyright Kyle Geske 1999/2000

*

~

inmport java.awt.*;
inport java.aw.event.*;
inmport javax.sw ng.*;

public class gps_U extends JFrane

{
private |ocation_file |ocationFile;
private history file historyFile;
private status_vector webStatus, clientStatus, except St at us;
private Container gpsUl;
private JButton

di sabl eWebBut t, di sabl e i entButt, cl ear WebButt, clearCientButt;
private JText Area

webSt at usAr ea, dat aSt at usAr ea, except St at usAr ea, hi st orySt at usAr ea;
private Tiner webTi nmer, clientTiner, exceptTi mer, hi storyTi ner;

public gps_Ul (location_file locationFile, history_file
hi storyFil e, status_vector webStatus, status_vector clientStatus, status_vector
except St at us)

{
super ("Way- K GPS Server");

this.locationFile = locationFile;
this.historyFile = historyFile;
this. webSt at us = webSt at us;
this.clientStatus = clientStatus;
this. except Status = except St at us;

try

{

U Manager . set LookAndFeel (Ul Manager . get Cr ossPl at f or mLookAndFeel Cl assNane()) ;
}

catch (Exception e)

Systemerr.println("Could not |oad Java | ook and Feel.");

}

JPanel statusPanel = new JPanel ();

webSt at usArea = new JText Area(" Wb Server Status:\n");
webSt at usAr ea. set Edi t abl e(f al se) ;

dat aStat usArea = new JText Area("Data Server Status:\n");
dat aSt at usAr ea. set Edi t abl e(fal se);

except St at usArea = new JText Area(" Server Exceptions:\n");

113

except St at usAr ea. set Edi t abl e(f al se);
hi storySt at usArea = new JText Area(" Server Exceptions:\n");
hi st orySt at usAr ea. set Edi t abl e(f al se);
JScrol | Pane webScrol |l = new
JScrol | Pane(webSt at usAr ea, JScr ol | Pane. VERTI CAL_SCROLLBAR_AS_NEEDED, JScr ol | Pane.
HORI ZONTAL_SCROLLBAR_AS_NEEDED) ;
JScrol | Pane dataScroll = new
JScrol | Pane(dat aSt at usAr ea, JScr ol | Pane. VERTI CAL_SCROLLBAR_AS_NEEDED, JScr ol | Pane
. HORI ZONTAL _SCROLLBAR_AS_NEEDED ;
JScrol | Pane exceptScroll = new
JScrol | Pane(except St at usAr ea, JScr ol | Pane. VERTI CAL_SCROLLBAR_AS_NEEDED, JScr ol | Pa
ne. HORI ZONTAL_SCROLLBAR_AS_NEEDED) ;
JScrol | Pane historyScroll = new
JScrol | Pane(hi storySt at usArea, JScrol | Pane. VERTI CAL_SCROLLBAR_AS_NEEDED, JScrol | P
ane. HORI ZONTAL_SCROLLBAR_AS_NEEDED) ;

webScrol | . set Bor der (Bor der Fact ory. creat eTi t| edBor der (Bor der Fact ory. cr eat eEt ched
Border(),"Veb Server Status"));

dat aScrol | . set Border (Border Factory. creat eTi t| edBor der (Bor der Factory. creat eEtc
hedBorder (), "dient Server Status"));

except Scrol | . set Bor der (Bor der Factory. creat eTi t | edBor der (Bor der Fact ory. cr eat eE
t chedBorder (), "Server Exceptions Status"));

hi storyScrol | . set Bor der (Bor der Fact ory. creat eTi t| edBor der (Bor der Factory. create
Et chedBorder (), " GPS history"));

st at usPanel . set Layout (new G'i dLayout (1, 2));

st at usPanel . add(webScrol |);

st at usPanel . add(dataScrol |);

JPanel buttonPanel = new JPanel ();
but t onPanel . set Layout (new Gri dLayout (1, 4));

di sabl eWbButt = new JButton("Di sable Web Logs");

di sabl eWebBut t . addAct i onLi st ener (new weblLogLi stener());

di sableCientButt = new JButton("Di sable Cient Logs");

di sabl ed i ent Butt.addActi onLi st ener (new cl i ent LogLi stener());
cl ear WbButt = new JButton("Cl ear Wb Logs");

cl ear WebBut t . addAct i onLi st ener (new webCl ear Li stener());
clearCientButt = new JButton("Clear Client Logs");
cleardientButt.addActionLi stener(new clientd earlListener());

but t onPanel . add(di sabl eWwebButt);
but t onPanel . add(cl ear WebButt);

but t onPanel . add(di sabl ed i entButt);
but t onPanel . add(cl eard ientButt);

JPanel mai nSt at usPanel = new JPanel ();
mai NSt at usPanel . set Layout (new Gri dLayout (2,1));
mai nSt at usPanel . add(st at usPanel) ;

JPanel exceptHi st Panel = new JPanel ();

except Hi st Panel . set Layout (new Gri dLayout(1,2));
except Hi st Panel . add(except Scrol |');

except Hi st Panel . add(hi storyScrol |);

mai nSt at usPanel . add(except Hi st Panel) ;
JPanel centerPanel = new JPanel ();
cent er Panel . set Layout (new Bor der Layout ());

cent er Panel . add(mai nSt at usPanel , Bor der Layout . CENTER) ;
cent er Panel . add(but t onPanel , Bor der Layout . SOUTH) ;

114

gpsU = this.getContentPane();
gpsUl . add(cent er Panel) ;

webTi mer = new Ti mer (5000, new webTi merListener());
webTi ner. setlnitial Del ay(0);
webTi ner.start ();

clientTinmer = new Tiner(5000, new clientTinerListener());
clientTiner.setlnitial Del ay(0);
clientTimer.start();

except Ti ner = new Ti ner (5000, new except Ti merListener());
except Ti ner.setlnitial Del ay(0);
exceptTimer.start();

hi st orySt at usArea. set Text (historyFile.toString());
hi storyTi mer = new Ti mer (60000, new hi storyTi nerListener());

hi storyTiner.setlnitial Del ay(0);
historyTimer.start();

[1this.pack();
t hi s. set Si ze(600, 600);
t hi s. set Resi zabl e(true);
this.setVisible(true);
t hi s. addW ndowLi st ener (new cl oseDown());
}
cl ass webTi mer Li stener inplements ActionLi stener

public void actionPerfornmed(Acti onEvent evt)

i f (webStatus. changed())
{

}
}

webSt at usAr ea. append(webSt at us. readUpdat e()) ;

}

class clientTimerListener inplenents ActionListener

{

public void actionPerfornmed(Acti onEvent evt)

{
if (clientStatus.changed())

dat aSt at usAr ea. append(client St at us. readUpdate());

}
}
}

cl ass except Ti merLi stener inplenents ActionListener
public void actionPerforned(Acti onEvent evt)

i f (except Status.changed())
{

}
}

except St at usAr ea. append(except St at us. readUpdate());

}

115

class historyTimerListener inplements ActionLi stener

public void actionPerfornmed(Acti onEvent evt)

{
hi st orySt at usArea. set Text (hi storyFile.toString());

}
cl ass webLogLi stener inplenents ActionListener

public void actionPerfornmed(ActionEvent evt)

{
String text = disabl eWebButt. get Text();

if (text.equal s("Di sable Wb Logs"))

di sabl eWebButt. set Text ("Enabl e Wb Logs") ;
webSt at usAr ea. set Enabl ed(f al se) ;
webSt at us. set Enabl ed(f al se);

}

el se

di sabl eWebBut t . set Text ("Di sabl e Wb Logs");
webSt at usAr ea. set Enabl ed(true);
webSt at us. set Enabl ed(true) ;

}

}

class clientLogListener inplenents ActionListener

{

public void actionPerforned(Acti onEvent evt)

{
String text = disabledientButt.getText();
if (text.equal s("Disable Client Logs"))

di sabl ed i entButt. set Text("Enable Cient Logs");
dat aSt at usAr ea. set Enabl ed(f al se);
client Status. set Enabl ed(fal se);

}

el se

di sabl ed ientButt.set Text("Disable Client Logs");
dat aSt at usAr ea. set Enabl ed(true) ;
cl i ent Status. set Enabl ed(true);

}

}

class clientd earlListener inplenments ActionListener

{

public void actionPerfornmed(Acti onEvent evt)

clientStatus.clear();
dat aSt at usArea. set Text ("Data Server Status:\n");
}
}

cl ass webd earLi stener inplenments ActionListener

public void actionPerforned(ActionEvent evt)

116

webSt at us. cl ear () ;
webSt at usAr ea. set Text ("Web Server Status:\n");
}
}

cl ass cl oseDown extends W ndowAdapt er

public void wi ndowd osi ng(W ndowEvent we)

{
try
{
hi storyFi | e. dumpHi story();
| ocati onFil e. dunpLocati ons();

cat ch(Exception e)

Systemout.printIn("Closing " + e);

}
finally
{
Systemexit(0);
}
}

}

117

